Suppr超能文献

单孔经腋窝入路机器人改良根治性颈淋巴结清扫术(STAR-RND):初步经验。

Single-Port Transaxillary Robotic Modified Radical Neck Dissection (STAR-RND): Initial Experiences.

机构信息

Department of Surgery, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.

Department of Surgery, Yongin Severance Hospital, Gyeonggi-do, South Korea.

出版信息

Laryngoscope. 2023 Mar;133(3):709-714. doi: 10.1002/lary.30437. Epub 2022 Oct 29.

Abstract

OBJECTIVES

This study aimed to demonstrate the usefulness of single-port transaxillary robotic modified radical neck dissection (STAR-RND) for metastatic thyroid cancer, and its potential to make small and invisible surgical wounds possible compared to open modified radical neck dissection.

METHODS

Between January 2020 and July 2021, 30 thyroid cancer patients who underwent lateral neck dissection surgery with the da Vinci SP at Yonsei University Health System (Seoul, Korea) were studied.

RESULTS

All 30 patients, diagnosed with papillary thyroid cancer were women. The average operating time was 293.80 ± 36.58 (min), and the average postoperative hospital stay was 4.77 ± 0.57 (days). All patients were discharged after the expected number of hospitalization days without major complications.

CONCLUSION

STAR-RND is technically feasible and safe with a short length of the incision. To our knowledge, this is the first report on the use of a single-port robotic system for modified radical neck dissection. LEVEL OF EVIDENCE BY USING 2011 OCEBM: 4 Laryngoscope, 133:709-714, 2023.

摘要

目的

本研究旨在展示单端口经腋窝达芬奇机器人改良根治性颈淋巴结清扫术(STAR-RND)在转移性甲状腺癌中的应用价值,与开放式改良根治性颈淋巴结清扫术相比,STAR-RND 具有使手术切口更小、更隐形的潜力。

方法

2020 年 1 月至 2021 年 7 月,在韩国延世大学健康系统(首尔),我们对 30 例接受达芬奇 SP 侧颈部淋巴结清扫术的甲状腺癌患者进行了研究。

结果

所有 30 例被诊断为甲状腺乳头状癌的患者均为女性。平均手术时间为 293.80±36.58(分钟),平均术后住院时间为 4.77±0.57(天)。所有患者均在预计住院天数后出院,无重大并发症。

结论

STAR-RND 具有技术可行性和安全性,切口长度短。据我们所知,这是首例关于使用单端口机器人系统进行改良根治性颈淋巴结清扫术的报道。证据水平:2011 OCEBM:4 级,喉镜,133:709-714,2023 年。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验