Department of Veterinary Pathobiology, College of Veterinary Medicine, The University of Missouri, Columbia, Missouri, USA.
Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA.
Hum Gene Ther. 2023 May;34(9-10):459-470. doi: 10.1089/hum.2022.180. Epub 2023 Apr 6.
Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by dystrophin deficiency. Dystrophin consists of the amino terminus, central rod domain with 24 spectrin-like repeats and four hinges (H), cysteine-rich domain, and carboxyl terminus. Several highly abbreviated micro-dystrophins (μDys) are currently in clinical trials. They all carry H1 and H4. In this study, we investigated whether these two hinges are essential for μDy function in murine DMD models. Three otherwise identical μDys were engineered to contain H1 and/or H4 and were named H1/H4 (with both H1 and H4), ΔH1 (without H1), and ΔH4 (without H4). These constructs were packaged in adeno-associated virus serotype-9 and delivered to the tibialis anterior muscle of 3-month-old male mdx4cv mice (1E12 vector genome particles/muscle). Three months later, we detected equivalent μDys expression in total muscle lysate. However, only H1/H4 and ΔH1 showed correct sarcolemmal localization. ΔH4 mainly existed as sarcoplasmic aggregates. H1/H4 and ΔH1, but not ΔH4, fully restored the dystrophin-associated protein complex and significantly improved the specific muscle force. Eccentric contraction-induced force decline was best protected by H1/H4, followed by ΔH1, but not by ΔH4. Next, we compared H1/H4 and ΔH1 in 6-week-old male mdx mice by intravenous injection (1E13 vector genome particles/mouse). Four months postinjection, H1/H4 significantly outperformed ΔH1 in extensor digitorum longus muscle force measurements but two constructs yielded comparable electrocardiography improvements. We conclude that H4 is essential for μDys function and H1 facilitates force production. Our findings will help develop next-generation μDys gene therapy.
杜氏肌营养不良症(DMD)是一种由抗肌萎缩蛋白缺乏引起的致命肌肉疾病。抗肌萎缩蛋白由氨基末端、含有 24 个类似血影蛋白重复和四个铰链(H)的中心杆状结构域、富含半胱氨酸的结构域和羧基末端组成。目前有几种高度简化的微肌营养不良蛋白(μDys)正在进行临床试验。它们都携带 H1 和 H4。在这项研究中,我们研究了这两个铰链是否对小鼠 DMD 模型中 μDy 的功能至关重要。我们设计了三个完全相同的 μDys,使其包含 H1 和/或 H4,并将它们命名为 H1/H4(同时含有 H1 和 H4)、ΔH1(不含 H1)和 ΔH4(不含 H4)。这些构建体被包装在腺相关病毒血清型 9 中,并递送到 3 个月大的 mdx4cv 雄性小鼠的比目鱼肌(1E12 载体基因组颗粒/肌肉)。三个月后,我们在总肌肉裂解物中检测到了等量的 μDys 表达。然而,只有 H1/H4 和 ΔH1 显示出正确的肌膜定位。ΔH4 主要存在于肌浆内聚集体中。H1/H4 和 ΔH1,但不是 ΔH4,完全恢复了肌营养不良蛋白相关蛋白复合物,并显著提高了特定肌肉力量。H1/H4 能最好地保护离心收缩引起的力下降,其次是 ΔH1,但不是 ΔH4。接下来,我们通过静脉注射(1E13 载体基因组颗粒/只)在 6 周大的雄性 mdx 小鼠中比较 H1/H4 和 ΔH1。注射后 4 个月,H1/H4 在伸趾长肌力量测量方面明显优于 ΔH1,但两种构建体在心电图改善方面具有可比性。我们得出结论,H4 对 μDys 的功能至关重要,H1 有助于产生力量。我们的发现将有助于开发下一代 μDys 基因治疗。