Suppr超能文献

《人类蛋白质组组织 2022 年人类蛋白质组报告》。

The 2022 Report on the Human Proteome from the HUPO Human Proteome Project.

机构信息

University of Michigan, Ann Arbor, Michigan48109, United States.

Institute for Systems Biology, Seattle, Washington98109, United States.

出版信息

J Proteome Res. 2023 Apr 7;22(4):1024-1042. doi: 10.1021/acs.jproteome.2c00498. Epub 2022 Nov 1.

Abstract

The 2022 Metrics of the Human Proteome from the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 407 (93.2%) of the 19 750 predicted proteins coded in the human genome, a net gain of 50 since 2021 from data sets generated around the world and reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 78 from 1421 to 1343. This represents continuing experimental progress on the human proteome parts list across all the chromosomes, as well as significant reclassifications. Meanwhile, applying proteomics in a vast array of biological and clinical studies continues to yield significant findings and growing integration with other omics platforms. We present highlights from the Chromosome-Centric HPP, Biology and Disease-driven HPP, and HPP Resource Pillars, compare features of mass spectrometry and Olink and Somalogic platforms, note the emergence of translation products from ribosome profiling of small open reading frames, and discuss the launch of the initial HPP Grand Challenge Project, "A Function for Each Protein".

摘要

2022 年人类蛋白质组组织(HUPO)人类蛋白质组计划(HPP)的指标显示,现在已经可信地检测到(NextProt PE1 水平)人类基因组中 19750 个预测蛋白编码中的 18407 个(93.2%),比 2021 年增加了 50 个,这些数据来自世界各地生成的数据集,并由 HPP 重新分析。相反,NextProt PE2、PE3 和 PE4 缺失蛋白的数量从 1421 个减少到 1343 个,减少了 78 个。这代表着在所有染色体上的人类蛋白质组部分清单上的实验进展不断,同时也进行了大量的重新分类。同时,在大量的生物学和临床研究中应用蛋白质组学技术继续产生重要发现,并与其他组学平台不断融合。我们从染色体中心 HPP、生物学和疾病驱动的 HPP 以及 HPP 资源支柱中展示了亮点,比较了质谱和 Olink 和 Somalogic 平台的特点,注意到从小开放阅读框核糖体图谱中翻译产物的出现,并讨论了初始 HPP 大挑战项目“每个蛋白质的功能”的启动。

相似文献

1
The 2022 Report on the Human Proteome from the HUPO Human Proteome Project.
J Proteome Res. 2023 Apr 7;22(4):1024-1042. doi: 10.1021/acs.jproteome.2c00498. Epub 2022 Nov 1.
2
The 2023 Report on the Proteome from the HUPO Human Proteome Project.
J Proteome Res. 2024 Feb 2;23(2):532-549. doi: 10.1021/acs.jproteome.3c00591. Epub 2024 Jan 17.
3
Progress Identifying and Analyzing the Human Proteome: 2021 Metrics from the HUPO Human Proteome Project.
J Proteome Res. 2021 Dec 3;20(12):5227-5240. doi: 10.1021/acs.jproteome.1c00590. Epub 2021 Oct 20.
5
Progress on Identifying and Characterizing the Human Proteome: 2019 Metrics from the HUPO Human Proteome Project.
J Proteome Res. 2019 Dec 6;18(12):4098-4107. doi: 10.1021/acs.jproteome.9b00434. Epub 2019 Sep 13.
6
Progress on Identifying and Characterizing the Human Proteome: 2018 Metrics from the HUPO Human Proteome Project.
J Proteome Res. 2018 Dec 7;17(12):4031-4041. doi: 10.1021/acs.jproteome.8b00441. Epub 2018 Aug 23.
7
Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function.
J Proteome Res. 2018 Dec 7;17(12):4042-4050. doi: 10.1021/acs.jproteome.8b00383. Epub 2018 Nov 29.
8
The 2024 Report on the Human Proteome from the HUPO Human Proteome Project.
J Proteome Res. 2024 Dec 6;23(12):5296-5311. doi: 10.1021/acs.jproteome.4c00776. Epub 2024 Nov 8.
9
Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project.
J Proteome Res. 2017 Dec 1;16(12):4281-4287. doi: 10.1021/acs.jproteome.7b00375. Epub 2017 Oct 9.

引用本文的文献

1
Integrated Plasma and Tumor Proteomics of Nasopharyngeal Carcinoma in a Moroccan Cohort.
Int J Mol Sci. 2025 Jun 16;26(12):5771. doi: 10.3390/ijms26125771.
2
Composition and Neurogenetic Effects of Embryonic Cerebrospinal Fluid: A Systematic Review.
Neuromolecular Med. 2025 May 10;27(1):33. doi: 10.1007/s12017-025-08829-1.
3
Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome.
Chem Rev. 2025 Apr 23;125(8):4069-4110. doi: 10.1021/acs.chemrev.4c00554. Epub 2025 Apr 3.
4
π-HuB: the proteomic navigator of the human body.
Nature. 2024 Dec;636(8042):322-331. doi: 10.1038/s41586-024-08280-5. Epub 2024 Dec 11.
5
The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends.
J Proteome Res. 2024 Dec 6;23(12):5279-5295. doi: 10.1021/acs.jproteome.4c00586. Epub 2024 Oct 31.
6
Clinical glycoproteomics: methods and diseases.
MedComm (2020). 2024 Oct 4;5(10):e760. doi: 10.1002/mco2.760. eCollection 2024 Oct.
7
High-quality peptide evidence for annotating non-canonical open reading frames as human proteins.
bioRxiv. 2024 Sep 9:2024.09.09.612016. doi: 10.1101/2024.09.09.612016.
8
Targeted proteomics addresses selectivity and complexity of protein degradation by autophagy.
Autophagy. 2025 Feb;21(2):460-475. doi: 10.1080/15548627.2024.2396792. Epub 2024 Sep 20.
9
Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry.
ACS Meas Sci Au. 2024 Jun 4;4(4):338-417. doi: 10.1021/acsmeasuresciau.3c00068. eCollection 2024 Aug 21.
10
ACP-DRL: an anticancer peptides recognition method based on deep representation learning.
Front Genet. 2024 Apr 9;15:1376486. doi: 10.3389/fgene.2024.1376486. eCollection 2024.

本文引用的文献

1
Targeted phospholipidomic analysis of synovial fluid as a tool for osteoarthritis deep phenotyping.
Osteoarthr Cartil Open. 2021 Oct 20;3(4):100219. doi: 10.1016/j.ocarto.2021.100219. eCollection 2021 Dec.
3
Restructured membrane contacts rewire organelles for human cytomegalovirus infection.
Nat Commun. 2022 Aug 11;13(1):4720. doi: 10.1038/s41467-022-32488-6.
4
Standardized annotation of translated open reading frames.
Nat Biotechnol. 2022 Jul;40(7):994-999. doi: 10.1038/s41587-022-01369-0.
5
A human adipose tissue cell-type transcriptome atlas.
Cell Rep. 2022 Jul 12;40(2):111046. doi: 10.1016/j.celrep.2022.111046.
6
Mission, Organization, and Future Direction of the Serological Sciences Network for COVID-19 (SeroNet) Epidemiologic Cohort Studies.
Open Forum Infect Dis. 2022 Apr 27;9(6):ofac171. doi: 10.1093/ofid/ofac171. eCollection 2022 Jun.
7
Integrative metabolomic and proteomic signatures define clinical outcomes in severe COVID-19.
iScience. 2022 Jul 15;25(7):104612. doi: 10.1016/j.isci.2022.104612. Epub 2022 Jun 17.
8
Early-Stage Loss of GALNT6 Predicts Poor Clinical Outcome in Colorectal Cancer.
Front Oncol. 2022 May 27;12:802548. doi: 10.3389/fonc.2022.802548. eCollection 2022.
9
Proteomic alterations in extracellular vesicles induced by oncogenic PIK3CA mutations.
Proteomics. 2022 Oct;22(19-20):e2200077. doi: 10.1002/pmic.202200077. Epub 2022 Jul 14.
10
Rise of the SARS-CoV-2 Variants: can proteomics be the silver bullet?
Expert Rev Proteomics. 2022 Mar;19(3):197-212. doi: 10.1080/14789450.2022.2085564. Epub 2022 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验