Suppr超能文献

基于权重的 Cox 模型在不共享数据的分布式数据库中对事件时间数据的应用

WICOX: Weight-Based Integrated Cox Model for Time-to-Event Data in Distributed Databases Without Data-Sharing.

出版信息

IEEE J Biomed Health Inform. 2023 Jan;27(1):526-537. doi: 10.1109/JBHI.2022.3218585. Epub 2023 Jan 4.

Abstract

To exploit large-scale biomedical data, the application of common data models and the establishment of data networks are being actively carried out worldwide. However, due to the privacy issues, it is difficult to share data distributed among institutions. In this study, we developed and evaluated weight-based integrated Cox model (WICOX) as a privacy-protecting method without sharing patient-level information across institutions. WICOX generates a weight for each institutional model and builds an integrated model of multi-institutional data based on these weights. WICOX does not require iterative communication until the centralized parameter converges. We performed experiments to show the weight characteristic of our algorithm based on 10 hospitals (2910 intensive care unit (ICU) stays in total) from the electronic intensive care unit Collaborative Research Database to predict time to ICU mortality with eight risk factors. Compared with the centralized Cox model, WICOX showed biases from 0 to 0.68E-2, from 0.00E-2 to 4.98E-2, and from 0.74E-2 to 1.7E-2 for time-dependent AUC, log hazard ratio, and survival rate, respectively. In addition, through simulation results using real 10 hospitals, WICOX showed robust results in accuracy under any composition of hospitals. The results of the experiments highlight that WICOX has robust characteristics and provides predictive performance and statistical inference results nearly the same as those of the centralized model. WICOX is a non-iterative method using the weight of institutional model for implementing the Cox model across multiple institutions in a privacy-preserving manner.

摘要

为了开发利用大规模的生物医学数据,全球范围内正在积极应用通用数据模型并建立数据网络。然而,由于隐私问题,很难在机构之间共享分布的数据。在这项研究中,我们开发并评估了基于权重的综合 Cox 模型(WICOX),作为一种无需在机构间共享患者级信息的隐私保护方法。WICOX 为每个机构模型生成一个权重,并基于这些权重构建多机构数据的综合模型。WICOX 不需要迭代通信,直到集中参数收敛。我们进行了实验,基于电子重症监护协作研究数据库中的 10 家医院(共 2910 例重症监护病房(ICU)住院患者),展示了我们算法的权重特征,以预测 8 个风险因素的 ICU 死亡率。与集中 Cox 模型相比,WICOX 在时间依赖性 AUC、对数风险比和生存率方面的偏差分别为 0 到 0.68E-2、0.00E-2 到 4.98E-2 和 0.74E-2 到 1.7E-2。此外,通过使用真实的 10 家医院的模拟结果,WICOX 在任何医院组合下的准确性都表现出稳健的结果。实验结果突出表明,WICOX 具有稳健的特征,可提供与集中模型几乎相同的预测性能和统计推断结果。WICOX 是一种非迭代方法,使用机构模型的权重以隐私保护的方式在多个机构中实施 Cox 模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验