Suppr超能文献

使用瞬态肌电图分类器对多种手腕和手部动作进行解码

Decoding of Multiple Wrist and Hand Movements Using a Transient EMG Classifier.

作者信息

D'Accolti Daniele, Dejanovic Katarina, Cappello Leonardo, Mastinu Enzo, Ortiz-Catalan Max, Cipriani Christian

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:208-217. doi: 10.1109/TNSRE.2022.3218430. Epub 2023 Jan 31.

Abstract

The design of prosthetic controllers by means of neurophysiological signals still poses a crucial challenge to bioengineers. State of the art of electromyographic (EMG) continuous pattern recognition controllers rely on the questionable assumption that repeated muscular contractions produce repeatable patterns of steady-state EMG signals. Conversely, we propose an algorithm that decodes wrist and hand movements by processing the signals that immediately follow the onset of contraction (i.e., the transient EMG). We collected EMG data from the forearms of 14 non-amputee and 5 transradial amputee participants while they performed wrist flexion/extension, pronation/supination, and four hand grasps (power, lateral, bi-digital, open). We firstly identified the combination of wrist and hand movements that yielded the best control performance for the same participant (intra-subject classification). Then, we assessed the ability of our algorithm to classify participant data that were not included in the training set (cross-subject classification). Our controller achieved a median accuracy of ~96% with non-amputees, while it achieved heterogeneous outcomes with amputees, with a median accuracy of ~89%. Importantly, for each amputee, it produced at least one acceptable combination of wrist-hand movements (i.e., with accuracy >85%). Regarding the cross-subject classifier, while our algorithm obtained promising results with non-amputees (accuracy up to ~80%), they were not as good with amputees (accuracy up to ~35%), possibly suggesting further assessments with domain-adaptation strategies. In general, our offline outcomes, together with a preliminary online assessment, support the hypothesis that the transient EMG decoding could represent a viable pattern recognition strategy, encouraging further online assessments.

摘要

利用神经生理信号设计假肢控制器仍然是生物工程师面临的一项关键挑战。肌电图(EMG)连续模式识别控制器的现有技术依赖于一个有问题的假设,即重复的肌肉收缩会产生可重复的稳态EMG信号模式。相反,我们提出了一种算法,通过处理紧接收缩开始后出现的信号(即瞬态EMG)来解码手腕和手部运动。我们从14名非截肢者和5名经桡骨截肢者的前臂收集了EMG数据,他们在进行手腕屈伸、旋前/旋后以及四种手部抓握动作(强力抓握、侧方抓握、双指抓握、张开)时。我们首先确定了对同一参与者产生最佳控制性能的手腕和手部运动组合(受试者内分类)。然后,我们评估了我们的算法对未包含在训练集中的参与者数据进行分类的能力(受试者间分类)。我们的控制器在非截肢者中实现了约96%的中位数准确率,而在截肢者中则取得了不同的结果,中位数准确率约为89%。重要的是,对于每个截肢者,它至少产生了一种可接受的手腕 -手部运动组合(即准确率>85%)。关于受试者间分类器,虽然我们的算法在非截肢者中取得了有希望的结果(准确率高达约80%),但在截肢者中效果不佳(准确率高达约35%),这可能表明需要采用域适应策略进行进一步评估。总体而言,我们的离线结果以及初步的在线评估支持了瞬态EMG解码可能代表一种可行的模式识别策略的假设,这鼓励了进一步的在线评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验