Yue Xiaoqiu, Dong Yingxia, Cao Heng, Wei Xijun, Zheng Qiaoji, Sun Wei, Lin Dunmin
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China.
State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
J Colloid Interface Sci. 2023 Jan 15;630(Pt A):973-983. doi: 10.1016/j.jcis.2022.10.033. Epub 2022 Oct 17.
Layered double hydroxides (LDHs) with high theoretical capacity have broad prospectsin energy storage applications. However, their slow charge transfer kinetics and easy agglomerate hinder their applications in high-performance supercapacitors. Herein, Co-doped nickel aluminum layered double hydroxides (NiAl-LDH-Co-x, x = 0, 0.3, 0.6, 0.9, 1.2, 1.5) have been designed and prepared by a convenient hydrothermal process. The multicomponent layer structure formed by cobalt doping facilitates sufficient penetration of the electrolyte and accelerates the charge transfer kinetics. Furthermore, the more open layer spacing and electronic interactions induced by Co doping are conducive to accelerating ion de-intercalation, thereby further improving the kinetic behavior of charge storage. Benefiting from the unique microstructure and Co doping effect, the prepared NiAl-LDH-Co-0.9 provides a superior specific capacity of 985 C g at 1 A g. In addition, the assembled hybrid supercapacitor with the NiAl-LDH-Co-0.9 as the positive electrode provides a remarkable energy density of 22.51 Wh kg at a power density of 800 W kg and exhibits an excellent cycle life with 80 % capacity retention after 20,000 cycles. This study demonstrates the great potential of efficient microstructure design and doping strategy in enhancing the charge storage of electrode materials.
具有高理论容量的层状双氢氧化物(LDHs)在储能应用中具有广阔前景。然而,其缓慢的电荷转移动力学和易团聚的特性阻碍了它们在高性能超级电容器中的应用。在此,通过简便的水热法设计并制备了钴掺杂的镍铝层状双氢氧化物(NiAl-LDH-Co-x,x = 0、0.3、0.6、0.9、1.2、1.5)。钴掺杂形成的多组分层状结构有利于电解质的充分渗透并加速电荷转移动力学。此外,钴掺杂引起的更开放的层间距和电子相互作用有利于加速离子脱嵌,从而进一步改善电荷存储的动力学行为。得益于独特的微观结构和钴掺杂效应,所制备的NiAl-LDH-Co-0.9在1 A g时提供了985 C g的优异比容量。此外,以NiAl-LDH-Co-0.9为正极组装的混合超级电容器在功率密度为800 W kg时提供了22.51 Wh kg的显著能量密度,并在20,000次循环后表现出优异的循环寿命,容量保持率为80%。这项研究证明了高效的微观结构设计和掺杂策略在增强电极材料电荷存储方面的巨大潜力。