Suppr超能文献

用于全解水的工程化非晶态/晶态棒状核壳电催化剂

Engineering Amorphous/Crystalline Rod-like Core-Shell Electrocatalysts for Overall Water Splitting.

作者信息

Li Linfeng, Sun Huachuan, Xu Xuefei, Humayun Muhammad, Ao Xiang, Yuen Muk Fung, Xue Xinying, Wu Ying, Yang Yang, Wang Chundong

机构信息

School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2022 Nov 16;14(45):50783-50793. doi: 10.1021/acsami.2c13417. Epub 2022 Nov 4.

Abstract

The design of bifunctional electrocatalysts for hydrogen and oxygen evolution reactions delivering excellent catalytic activity and stability is highly desirable, yet challenged. Herein, we report an amorphous RuO-encapsulated crystalline NiSe nanorod structure (termed as a/c-RuO/NiSe) for enhanced HER and OER activities. The as-prepared a/c-RuO/NiSe nanorods not only demonstrate splendid HER activity (58 mV@10 mA cm vs RHE), OER activity (233 mV@10 mA cm vs RHE), and electrolyzer activity (1.488 V@10 mA cm vs RHE for overall water splitting) but also exhibit long-term stability with negligible performance decay after 50 h continuous test for overall water splitting. In addition, the variation of the d-band center (from the perspective of bonding and antibonding states) is unveiled theoretically by density functional theory calculations upon amorphous RuO layers coupling to clarify the increased hydrogen species adsorption for HER activity enhancement. This work represents a new pathway for the fabrication of bifunctional electrocatalysts toward green hydrogen generation.

摘要

设计出具有优异催化活性和稳定性的用于析氢反应和析氧反应的双功能电催化剂是非常令人期待的,但也面临挑战。在此,我们报道了一种用于增强析氢反应和析氧反应活性的非晶态RuO包覆的晶体NiSe纳米棒结构(称为a/c-RuO/NiSe)。所制备的a/c-RuO/NiSe纳米棒不仅展现出出色的析氢反应活性(相对于可逆氢电极,在10 mA cm时为58 mV)、析氧反应活性(相对于可逆氢电极,在10 mA cm时为233 mV)和电解槽活性(对于全水解,相对于可逆氢电极,在10 mA cm时为1.488 V),而且在全水解连续测试50小时后表现出长期稳定性,性能衰减可忽略不计。此外,通过密度泛函理论计算从理论上揭示了非晶态RuO层耦合时d带中心的变化(从成键和反键态的角度),以阐明析氢反应活性增强是由于氢物种吸附增加。这项工作为制备用于绿色制氢的双功能电催化剂开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验