Suppr超能文献

引入“幽灵”泡利算符改进量子测量。

Improving Quantum Measurements by Introducing "Ghost" Pauli Products.

机构信息

Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Toronto, Ontario M1C 1A4, Canada.

Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

出版信息

J Chem Theory Comput. 2022 Dec 13;18(12):7394-7402. doi: 10.1021/acs.jctc.2c00837. Epub 2022 Nov 4.

Abstract

Reducing the number of measurements required to estimate the expectation value of an observable is crucial for the variational quantum eigensolver to become competitive with state-of-the-art classical algorithms. To measure complicated observables such as a molecular electronic Hamiltonian, one of the common strategies is to partition the observable into linear combinations (fragments) of mutually commutative Pauli products. The total number of measurements for obtaining the expectation value is then proportional to the sum of variances of individual fragments. We propose a method that lowers individual fragment variances by modifying the fragments without changing the total observable expectation value. Our approach is based on adding Pauli products ("ghosts") that are compatible with members of multiple fragments. The total expectation value does not change because a sum of coefficients for each "ghost" Pauli product introduced to several fragments is zero. Yet, these additions change individual fragment variances because of the non-vanishing contributions of "ghost" Pauli products within each fragment. The proposed algorithm minimizes individual fragment variances using a classically efficient approximation of the quantum wavefunction for variance estimations. Numerical tests on a few molecular electronic Hamiltonian expectation values show several-fold reductions in the number of measurements in the "ghost" Pauli algorithm compared to those in the other recently developed techniques.

摘要

为了使变分量子本征求解器在竞争中胜过最先进的经典算法,减少估计可观测量的期望值所需的测量次数至关重要。要测量复杂的可观测量,例如分子电子哈密顿量,一种常见的策略是将可观测量划分为相互可交换的 Pauli 乘积的线性组合(片段)。获得期望值的总测量次数与各个片段的方差之和成正比。我们提出了一种通过修改片段而不改变总可观测量期望值来降低各个片段方差的方法。我们的方法基于添加与多个片段的成员兼容的 Pauli 乘积(“幽灵”)。由于引入到几个片段的每个“幽灵”Pauli 乘积的系数之和为零,因此总期望值不会改变。然而,这些添加会改变各个片段的方差,因为每个片段内的“幽灵”Pauli 乘积会产生非零贡献。所提出的算法使用量子波函数的经典有效近似值来最小化各个片段的方差,以便进行方差估计。对几个分子电子哈密顿量期望值的数值测试表明,与其他最近开发的技术相比,“幽灵”Pauli 算法中的测量次数减少了几倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验