UCL Institute of Cardiovascular Science, UCL, London, UK.
Great Ormond Street Hospital, London, UK.
J Cardiovasc Magn Reson. 2022 Nov 7;24(1):57. doi: 10.1186/s12968-022-00891-z.
Computational fluid dynamics (CFD) is increasingly used for the assessment of blood flow conditions in patients with congenital heart disease (CHD). This requires patient-specific anatomy, typically obtained from segmented 3D cardiovascular magnetic resonance (CMR) images. However, segmentation is time-consuming and requires expert input. This study aims to develop and validate a machine learning (ML) method for segmentation of the aorta and pulmonary arteries for CFD studies.
90 CHD patients were retrospectively selected for this study. 3D CMR images were manually segmented to obtain ground-truth (GT) background, aorta and pulmonary artery labels. These were used to train and optimize a U-Net model, using a 70-10-10 train-validation-test split. Segmentation performance was primarily evaluated using Dice score. CFD simulations were set up from GT and ML segmentations using a semi-automatic meshing and simulation pipeline. Mean pressure and velocity fields across 99 planes along the vessel centrelines were extracted, and a mean average percentage error (MAPE) was calculated for each vessel pair (ML vs GT). A second observer (SO) segmented the test dataset for assessment of inter-observer variability. Friedman tests were used to compare ML vs GT, SO vs GT and ML vs SO metrics, and pressure/velocity field errors.
The network's Dice score (ML vs GT) was 0.945 (interquartile range: 0.929-0.955) for the aorta and 0.885 (0.851-0.899) for the pulmonary arteries. Differences with the inter-observer Dice score (SO vs GT) and ML vs SO Dice scores were not statistically significant for either aorta or pulmonary arteries (p = 0.741, p = 0.061). The ML vs GT MAPEs for pressure and velocity in the aorta were 10.1% (8.5-15.7%) and 4.1% (3.1-6.9%), respectively, and for the pulmonary arteries 14.6% (11.5-23.2%) and 6.3% (4.3-7.9%), respectively. Inter-observer (SO vs GT) and ML vs SO pressure and velocity MAPEs were of a similar magnitude to ML vs GT (p > 0.2).
ML can successfully segment the great vessels for CFD, with errors similar to inter-observer variability. This fast, automatic method reduces the time and effort needed for CFD analysis, making it more attractive for routine clinical use.
计算流体动力学(CFD)越来越多地用于评估先天性心脏病(CHD)患者的血流状况。这需要特定于患者的解剖结构,通常是从分割的 3D 心血管磁共振(CMR)图像中获得。然而,分割既耗时又需要专家输入。本研究旨在开发和验证一种用于 CFD 研究的主动脉和肺动脉分割的机器学习(ML)方法。
本研究回顾性选择了 90 例 CHD 患者。使用手动分割的 3D CMR 图像获得地面实况(GT)背景、主动脉和肺动脉标签。使用 70-10-10 训练-验证-测试分割来训练和优化 U-Net 模型。使用 Dice 评分主要评估分割性能。使用半自动网格和模拟管道从 GT 和 ML 分割设置 CFD 模拟。从 GT 和 ML 分割提取沿血管中心线 99 个平面的平均压力和速度场,并计算每个血管对(ML 与 GT)的平均平均百分比误差(MAPE)。第二观察者(SO)对测试数据集进行分割,以评估观察者间变异性。使用 Friedman 检验比较 ML 与 GT、SO 与 GT 和 ML 与 SO 指标以及压力/速度场误差。
网络的 Dice 评分(ML 与 GT)分别为主动脉 0.945(四分位距:0.929-0.955)和肺动脉 0.885(0.851-0.899)。主动脉和肺动脉的观察者间 Dice 评分(SO 与 GT)和 ML 与 SO Dice 评分之间的差异无统计学意义(p=0.741,p=0.061)。主动脉和肺动脉的 ML 与 GT 压力和速度的 MAPE 分别为 10.1%(8.5-15.7%)和 4.1%(3.1-6.9%),ML 与 SO 压力和速度的 MAPE 分别为 14.6%(11.5-23.2%)和 6.3%(4.3-7.9%)。观察者间(SO 与 GT)和 ML 与 SO 压力和速度 MAPE 与 ML 与 GT 相似(p>0.2)。
ML 可以成功地对 CFD 中的大血管进行分割,其误差与观察者间变异性相似。这种快速、自动的方法减少了 CFD 分析所需的时间和工作量,使其更适合常规临床使用。