Markouizou Athina, Anastassopoulou Jane, Kolovou Panayiota, Theophanides Theophile, Tsekeris Perikles
Radiation-Oncology Department, Metaxa Cancer Hospital of Piraeus, Piraeus, Greece.
Chemical Engineering School, Radiation Chemistry & Biospectroscopy, National Technical University of Athens, Athens, Greece.
Cancer Diagn Progn. 2022 Nov 3;2(6):750-757. doi: 10.21873/cdp.10170. eCollection 2022 Nov-Dec.
BACKGROUND/AIM: The early diagnosis of breast cancer plays an important role in reducing mortality and optimizing the prognosis of the disease. The existing visual and histopathological methods do not give any information at a molecular level. Fourier transform infrared spectroscopy does not require any preparation, such as fixation and histological stains. The collected infrared spectral "biomarker bands" give information at a molecular level and could be used for biomarker screening, in order to minimize the false-positive or false-negative results.
For this prospective study, nine biopsies of lobular carcinoma (7 in situ and 2 invasive) and the adjacent healthy region of the biopsies were used. Each infrared spectrum consisted of 120 scans/spectrum (120 co-added spectra) at a spectral resolution of 4 cm .
The infrared spectral analysis revealed three important "diagnostic spectral regions" between 3,300-2,850 cm , 1,700-1,500 cm , and 850-800 cm , which are related to membrane, collagen, and DNA configuration damage, respectively. The shift of the absorption band at 1,161 cm at higher wave numbers up to 1,172 cm is assigned to vC-O-C bonds due to membrane, protein, and DNA glycosylation.
The "biomarker bands" at 1,172 cm can be used as "diagnostic marker bands" for cancer progression. The shift of the absorbance band at 825 cm of the native configuration of B-DNA to lower wavenumbers at 810 cm Z-DNA in grade III, suggests the irreversible stage of the disease. The detection and possibility to differentiate the DNA structures may allow detection of carcinogenesis at the early stage of the disease, and development of new anticancer therapies.
背景/目的:乳腺癌的早期诊断对于降低死亡率和优化疾病预后起着重要作用。现有的视觉和组织病理学方法无法在分子水平上提供任何信息。傅里叶变换红外光谱法不需要任何诸如固定和组织学染色等准备工作。所收集的红外光谱“生物标志物谱带”能在分子水平上提供信息,可用于生物标志物筛选,以尽量减少假阳性或假阴性结果。
在这项前瞻性研究中,使用了9份小叶癌活检样本(7例原位癌和2例浸润性癌)以及活检样本的相邻健康区域。每个红外光谱由120次扫描/光谱(120个叠加光谱)组成,光谱分辨率为4厘米 。
红外光谱分析揭示了在3300 - 2850厘米 、1700 - 1500厘米 和850 - 800厘米 之间的三个重要“诊断光谱区域”,它们分别与膜、胶原蛋白和DNA构型损伤有关。在较高波数下,1161厘米 处的吸收带位移至1172厘米 ,这归因于膜、蛋白质和DNA糖基化导致的vC - O - C键。
1172厘米 处的“生物标志物谱带”可作为癌症进展的“诊断标记谱带”。在III级中,B - DNA天然构型在825厘米 处的吸收带位移至较低波数810厘米 的Z - DNA,表明疾病处于不可逆阶段。对DNA结构的检测和区分可能性可能有助于在疾病早期阶段检测到致癌作用,并开发新的抗癌疗法。