Suppr超能文献

有髓轴突作为调节大脑功能的可塑性电缆。

Myelinated axon as a plastic cable regulating brain functions.

机构信息

Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Japan.

Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Japan.

出版信息

Neurosci Res. 2023 Feb;187:45-51. doi: 10.1016/j.neures.2022.11.002. Epub 2022 Nov 5.

Abstract

Each oligodendrocyte (OC) forms myelin approximately in around 10 different axons to coordinate information transfer by regulating conduction velocity in the central nervous system (CNS). In the classical view, myelin has been considered a static structure that rarely turns over under healthy conditions because myelin tightly holds axons by their laminar complex structure. However, in recent decades, the classical views of static myelin have been renewed with pioneering studies that showed plastic changes in myelin throughout life with new experiences, such as the acquisition of new motor skills and the formation of memory. These changes in myelin regulate conduction velocity to optimize the temporal pattern of neuronal circuit activity among distinct brain regions associated with skill learning and memory. Here, we introduce pioneering studies and discuss the implications of plastic myelin on neural circuits and brain function.

摘要

每个少突胶质细胞(OC)大约在 10 个不同的轴突上形成髓鞘,通过调节中枢神经系统(CNS)中的传导速度来协调信息传递。在经典观点中,髓鞘被认为是一种静态结构,在健康条件下很少发生更替,因为髓鞘通过其层状复杂结构紧紧地固定轴突。然而,在最近几十年,随着先驱性研究的出现,经典的静态髓鞘观点得到了更新,这些研究表明,髓鞘在整个生命过程中都会发生可塑性变化,以适应新的经验,例如获得新的运动技能和形成记忆。髓鞘的这些变化调节传导速度,以优化与技能学习和记忆相关的不同脑区之间神经元回路活动的时间模式。在这里,我们介绍了先驱性研究,并讨论了可塑性髓鞘对神经回路和大脑功能的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验