Department of Chemistry, University of California, Berkeley, California 94720, USA.
J Chem Phys. 2022 Nov 7;157(17):174104. doi: 10.1063/5.0117659.
We describe a method for simulating exciton dynamics in protein-pigment complexes, including effects from charge transfer as well as fluorescence. The method combines the hierarchical equations of motion, which are used to describe quantum dynamics of excitons, and the Nakajima-Zwanzig quantum master equation, which is used to describe slower charge transfer processes. We study the charge transfer quenching in light harvesting complex II, a protein postulated to control non-photochemical quenching in many plant species. Using our hybrid approach, we find good agreement between our calculation and experimental measurements of the excitation lifetime. Furthermore, our calculations reveal that the exciton energy funnel plays an important role in determining quenching efficiency, a conclusion we expect to extend to other proteins that perform protective excitation quenching. This also highlights the need for simulation methods that properly account for the interplay of exciton dynamics and charge transfer processes.
我们描述了一种模拟蛋白质-色素复合物中激子动力学的方法,包括电荷转移和荧光的影响。该方法结合了运动方程的层次结构,用于描述激子的量子动力学,以及中岛-增泽量子主方程,用于描述较慢的电荷转移过程。我们研究了在光捕获复合物 II 中电荷转移猝灭的情况,该复合物被认为控制着许多植物物种中的非光化学猝灭。使用我们的混合方法,我们发现我们的计算与激发寿命的实验测量结果之间有很好的一致性。此外,我们的计算表明,激子能量漏斗在确定猝灭效率方面起着重要作用,我们预计这一结论将扩展到其他执行保护性激发猝灭的蛋白质。这也凸显了需要模拟方法来正确考虑激子动力学和电荷转移过程的相互作用。