Tawfik Sherif Abdulkader, Russo Salvy P
ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC, 3001, Australia.
Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia.
J Cheminform. 2022 Nov 8;14(1):78. doi: 10.1186/s13321-022-00658-9.
Establishing a data-driven pipeline for the discovery of novel materials requires the engineering of material features that can be feasibly calculated and can be applied to predict a material's target properties. Here we propose a new class of descriptors for describing crystal structures, which we term Robust One-Shot Ab initio (ROSA) descriptors. ROSA is computationally cheap and is shown to accurately predict a range of material properties. These simple and intuitive class of descriptors are generated from the energetics of a material at a low level of theory using an incomplete ab initio calculation. We demonstrate how the incorporation of ROSA descriptors in ML-based property prediction leads to accurate predictions over a wide range of crystals, amorphized crystals, metal-organic frameworks and molecules. We believe that the low computational cost and ease of use of these descriptors will significantly improve ML-based predictions.
建立一个数据驱动的新型材料发现管道需要设计出能够切实计算且可用于预测材料目标性能的材料特征。在此,我们提出了一类用于描述晶体结构的新描述符,我们将其称为稳健一次性从头算(ROSA)描述符。ROSA计算成本低,并且已证明能准确预测一系列材料性能。这类简单直观的描述符是在低理论水平下利用不完整的从头算计算从材料的能量学中生成的。我们展示了将ROSA描述符纳入基于机器学习的性能预测如何能在广泛的晶体、非晶化晶体、金属有机框架和分子上实现准确预测。我们相信这些描述符的低计算成本和易用性将显著改善基于机器学习的预测。