Suppr超能文献

评估鲸目动物监测项目中视觉调查的数据偏差。

Assessing data bias in visual surveys from a cetacean monitoring programme.

机构信息

Coastal Biodiversity Laboratory, CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, 4450-208, Matosinhos, Portugal.

Department of Biology, FCUP - Faculty of Sciences of the University of Porto, 4169-007, Porto, Portugal.

出版信息

Sci Data. 2022 Nov 10;9(1):682. doi: 10.1038/s41597-022-01803-7.

Abstract

Long-term monitoring datasets are fundamental to understand physical and ecological responses to environmental changes, supporting management and conservation. The data should be reliable, with the sources of bias identified and quantified. CETUS Project is a cetacean monitoring programme in the Eastern North Atlantic, based on visual methods of data collection. This study aims to assess data quality and bias in the CETUS dataset, by 1) applying validation methods, through photographic confirmation of species identification; 2) creating data quality criteria to evaluate the observer's experience; and 3) assessing bias to the number of sightings collected and to the success in species identification. Through photographic validation, the species identification of 10 sightings was corrected and a new species was added to the CETUS dataset. The number of sightings collected was biased by external factors, mostly by sampling effort but also by weather conditions. Ultimately, results highlight the importance of identifying and quantifying data bias, while also yielding guidelines for data collection and processing, relevant for species monitoring programmes based on visual methods.

摘要

长期监测数据集对于了解物理和生态对环境变化的响应至关重要,能够为管理和保护提供支持。这些数据应该是可靠的,并且需要确定和量化其偏差的来源。CETUS 项目是东北大西洋的一项鲸目动物监测计划,该计划基于数据收集的视觉方法。本研究旨在通过以下方法评估 CETUS 数据集的数据质量和偏差:1)通过照片确认物种鉴定来应用验证方法;2)创建数据质量标准来评估观察者的经验;3)评估对观测数量和物种鉴定成功率的偏差。通过照片验证,纠正了 10 次观测的物种鉴定错误,并在 CETUS 数据集增加了一个新的物种。观测数量的收集受到外部因素的影响,主要是由于采样力度,但也受到天气条件的影响。最终,结果强调了识别和量化数据偏差的重要性,同时也为基于视觉方法的物种监测计划提供了数据收集和处理的指导方针。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4225/9649672/ed3eaf95bca6/41597_2022_1803_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验