Suppr超能文献

ERF49 介导油菜素内酯调控拟南芥的耐热性。

ERF49 mediates brassinosteroid regulation of heat stress tolerance in Arabidopsis thaliana.

机构信息

Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

BMC Biol. 2022 Nov 10;20(1):254. doi: 10.1186/s12915-022-01455-4.

Abstract

BACKGROUND

Heat stress is a major abiotic stress affecting the growth and development of plants, including crop species. Plants have evolved various adaptive strategies to help them survive heat stress, including maintaining membrane stability, encoding heat shock proteins (HSPs) and ROS-scavenging enzymes, and inducing molecular chaperone signaling. Brassinosteroids (BRs) are phytohormones that regulate various aspects of plant development, which have been implicated also in plant responses to heat stress, and resistance to heat in Arabidopsis thaliana is enhanced by adding exogenous BR. Brassinazole resistant 1 (BZR1), a transcription factor and positive regulator of BR signal, controls plant growth and development by directly regulating downstream target genes. However, the molecular mechanism at the basis of BR-mediated heat stress response is poorly understood. Here, we report the identification of a new factor critical for BR-regulated heat stress tolerance.

RESULTS

We identified ERF49 in a genetic screen for proteins required for BR-regulated gene expression. We found that ERF49 is the direct target gene of BZR1 and that overexpressing ERF49 enhanced sensitivity of transgenic plants to heat stress. The transcription levels of heat shock factor HSFA2, heat stress-inducible gene DREB2A, and three heat shock protein (HSP) were significantly reduced under heat stress in ERF49-overexpressed transgenic plants. Transcriptional activity analysis in protoplast revealed that BZR1 inhibits ERF49 expression by binding to the promoter of ERF49. Our genetic analysis showed that dominant gain-of-function brassinazole resistant 1-1D mutant (bzr1-1D) exhibited lower sensitivity to heat stress compared with wild-type. Expressing ERF49-SRDX (a dominant repressor reporter of ERF49) in bzr1-1D significantly decreased the sensitivity of ERF49-SRDX/bzr1-1D transgenic plants to heat stress compared to bzr1-1D.

CONCLUSIONS

Our data provide clear evidence that BR increases thermotolerance of plants by repressing the expression of ERF49 through BZR1, and this process is dependent on the expression of downstream heat stress-inducible genes. Taken together, our work reveals a novel molecular mechanism mediating plant response to high temperature stress.

摘要

背景

热应激是影响植物生长和发育的主要非生物胁迫因素,包括作物种类。植物已经进化出各种适应策略来帮助它们在热应激下生存,包括维持膜稳定性、编码热休克蛋白(HSPs)和 ROS 清除酶,以及诱导分子伴侣信号。油菜素内酯(BRs)是一种调节植物发育各个方面的植物激素,也被认为参与了植物对热应激的反应,并且在拟南芥中添加外源 BR 可以增强耐热性。BZR1 是 BR 信号的转录因子和正调控因子,通过直接调控下游靶基因来控制植物的生长和发育。然而,BR 介导的热应激反应的分子机制还知之甚少。在这里,我们报道了一个新的因子的鉴定,该因子对 BR 调节的热应激耐受至关重要。

结果

我们在一个遗传筛选中鉴定出 ERF49,该筛选用于鉴定 BR 调节的基因表达所必需的蛋白质。我们发现 ERF49 是 BZR1 的直接靶基因,过表达 ERF49 增强了转基因植物对热应激的敏感性。在 ERF49 过表达转基因植物中,热休克因子 HSFA2、热应激诱导基因 DREB2A 和三种热休克蛋白(HSP)的转录水平在热应激下显著降低。在原生质体中的转录活性分析表明,BZR1 通过结合 ERF49 启动子抑制 ERF49 的表达。我们的遗传分析表明,显性 gain-of-function brassinazole resistant 1-1D 突变体(bzr1-1D)与野生型相比,对热应激的敏感性较低。在 bzr1-1D 中表达 ERF49-SRDX(ERF49 的显性阻遏报告基因),与 bzr1-1D 相比,显著降低了 ERF49-SRDX/bzr1-1D 转基因植物对热应激的敏感性。

结论

我们的数据提供了明确的证据,表明 BR 通过 BZR1 抑制 ERF49 的表达来增加植物的耐热性,并且这个过程依赖于下游热应激诱导基因的表达。综上所述,我们的工作揭示了一种新的分子机制,介导植物对高温胁迫的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/759e/9650836/df30456b076a/12915_2022_1455_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验