Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun 130062, China.
Int J Mol Sci. 2022 Nov 7;23(21):13658. doi: 10.3390/ijms232113658.
Hyperosmolality-gated calcium-permeable channels (OSCA) are characterized as an osmosensor in plants; they are able to recognize and respond to exogenous and endogenous osmotic changes, and play a vital role in plant growth and adaptability to environmental stress. To explore the potential biological functions of OSCAs in maize, we performed a bioinformatics and expression analysis of the gene family. Using bioinformatics methods, we identified twelve genes from the genome database of maize. According to their sequence composition and phylogenetic relationship, the maize family was classified into four groups (Ⅰ, Ⅱ, Ⅲ, and Ⅳ). Multiple sequence alignment analysis revealed a conserved DUF221 domain in these members. We modeled the calcium binding sites of four OSCA families using the autodocking technique. The expression profiles of genes were analyzed in different tissues and under diverse abiotic stresses such as drought, salt, high temperature, and chilling using quantitative real-time PCR (qRT-PCR). We found that the expression of twelve genes is variant in different tissues of maize. Furthermore, abiotic stresses such as drought, salt, high temperature, and chilling differentially induced the expression of twelve genes. We chose OSCA2.2 and OSCA2.3, which responded most strongly to temperature stress, for prediction of protein interactions. We modeled the calcium binding sites of four OSCA families using autodocking tools, obtaining a number of new results. These results are helpful in understanding the function of the plant gene family for study of the molecular mechanism of plant osmotic stress and response, as well as exploration of the interaction between osmotic stress, high-temperature stress, and low-temperature stress signal transduction mechanisms. As such, they can provide a theoretical basis for crop breeding.
高渗诱导钙通透通道(OSCA)被认为是植物中的渗透压感受器;它们能够识别和响应外源性和内源性渗透压变化,在植物生长和适应环境胁迫方面发挥着重要作用。为了探索 OSCA 在玉米中的潜在生物学功能,我们对该基因家族进行了生物信息学和表达分析。我们使用生物信息学方法从玉米基因组数据库中鉴定出 12 个基因。根据其序列组成和系统发育关系,将玉米 家族分为四个亚组(Ⅰ、Ⅱ、Ⅲ和Ⅳ)。多重序列比对分析显示这些成员中存在一个保守的 DUF221 结构域。我们使用自动对接技术对四个 OSCA 家族的钙结合位点进行建模。使用定量实时 PCR(qRT-PCR)分析了 基因在不同组织和不同非生物胁迫下(干旱、盐、高温和冷胁迫)的表达谱。我们发现 12 个 基因在玉米不同组织中的表达存在差异。此外,干旱、盐、高温和冷胁迫等非生物胁迫差异诱导了 12 个 基因的表达。我们选择对温度胁迫反应最强烈的 OSCA2.2 和 OSCA2.3 进行蛋白质相互作用预测。我们使用自动对接工具对四个 OSCA 家族的钙结合位点进行建模,获得了一些新的结果。这些结果有助于理解植物 基因家族的功能,研究植物渗透胁迫和响应的分子机制,以及探索渗透胁迫、高温胁迫和低温胁迫信号转导机制之间的相互作用。因此,它们可以为作物育种提供理论基础。