Department of Mathematics and Statistics, The University of Western Australia, Perth, WA 6009, Australia.
Tandon School of Engineering, New York University, New York, NY 11201.
Proc Natl Acad Sci U S A. 2022 Nov 22;119(47):e2118589119. doi: 10.1073/pnas.2118589119. Epub 2022 Nov 14.
As a ubiquitous paradigm of instabilities and mixing that occur in instances as diverse as supernovae, plasma fusion, oil recovery, and nanofabrication, the Rayleigh-Taylor (RT) problem is rightly regarded as important. The acceleration of the fluid medium in these instances often depends on time and space, whereas most past studies assume it to be constant or impulsive. Here, we analyze the symmetries of RT mixing for variable accelerations and obtain the scaling of correlations and spectra for classes of self-similar dynamics. RT mixing is shown to retain the memory of deterministic conditions for all accelerations, with the dynamics ranging from superballistic to subdiffusive. These results contribute to our understanding and control of the RT phenomena and reveal specific conditions under which Kolmogorov turbulence might be realized in RT mixing.
瑞利-泰勒(Rayleigh-Taylor,简称 RT)不稳定性是一种普遍存在的失稳和混合现象,存在于多种不同的情况中,如超新星、等离子体核聚变、采油和纳米制造等。因此,它被认为是非常重要的。在这些情况下,流体介质的加速通常取决于时间和空间,而过去的大多数研究都假设它是恒定的或脉冲式的。在这里,我们分析了具有变加速度的 RT 混合的对称性,并获得了自相似动力学类的相关性和谱的标度。结果表明,对于所有的加速度,RT 混合都保留了确定性条件的记忆,动力学范围从超弹道到亚扩散。这些结果有助于我们理解和控制 RT 现象,并揭示了在 RT 混合中实现柯尔莫哥洛夫湍流的具体条件。