Suppr超能文献

脑网络中的真正高阶相互作用与神经退行性变。

Genuine high-order interactions in brain networks and neurodegeneration.

作者信息

Herzog Rubén, Rosas Fernando E, Whelan Robert, Fittipaldi Sol, Santamaria-Garcia Hernando, Cruzat Josephine, Birba Agustina, Moguilner Sebastian, Tagliazucchi Enzo, Prado Pavel, Ibanez Agustin

机构信息

Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Fundación para el Estudio de la Conciencia Humana (EcoH), Chile.

Fundación para el Estudio de la Conciencia Humana (EcoH), Chile; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, UK; Data Science Institute, Imperial College London, UK; Centre for Complexity Science, Imperial College London, UK; Department of Informatics, University of Sussex, Brighton, UK.

出版信息

Neurobiol Dis. 2022 Dec;175:105918. doi: 10.1016/j.nbd.2022.105918. Epub 2022 Nov 12.

Abstract

Brain functional networks have been traditionally studied considering only interactions between pairs of regions, neglecting the richer information encoded in higher orders of interactions. In consequence, most of the connectivity studies in neurodegeneration and dementia use standard pairwise metrics. Here, we developed a genuine high-order functional connectivity (HOFC) approach that captures interactions between 3 or more regions across spatiotemporal scales, delivering a more biologically plausible characterization of the pathophysiology of neurodegeneration. We applied HOFC to multimodal (electroencephalography [EEG], and functional magnetic resonance imaging [fMRI]) data from patients diagnosed with behavioral variant of frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and healthy controls. HOFC revealed large effect sizes, which, in comparison to standard pairwise metrics, provided a more accurate and parsimonious characterization of neurodegeneration. The multimodal characterization of neurodegeneration revealed hypo and hyperconnectivity on medium to large-scale brain networks, with a larger contribution of the former. Regions as the amygdala, the insula, and frontal gyrus were associated with both effects, suggesting potential compensatory processes in hub regions. fMRI revealed hypoconnectivity in AD between regions of the default mode, salience, visual, and auditory networks, while in bvFTD between regions of the default mode, salience, and somatomotor networks. EEG revealed hypoconnectivity in the γ band between frontal, limbic, and sensory regions in AD, and in the δ band between frontal, temporal, parietal and posterior areas in bvFTD, suggesting additional pathophysiological processes that fMRI alone can not capture. Classification accuracy was comparable with standard biomarkers and robust against confounders such as sample size, age, education, and motor artifacts (from fMRI and EEG). We conclude that high-order interactions provide a detailed, EEG- and fMRI compatible, biologically plausible, and psychopathological-specific characterization of different neurodegenerative conditions.

摘要

传统上,对大脑功能网络的研究仅考虑区域对之间的相互作用,而忽略了高阶相互作用中编码的更丰富信息。因此,神经退行性疾病和痴呆症的大多数连通性研究都使用标准的成对指标。在此,我们开发了一种真正的高阶功能连通性(HOFC)方法,该方法可捕捉跨时空尺度的三个或更多区域之间的相互作用,从而对神经退行性疾病的病理生理学进行更符合生物学原理的表征。我们将HOFC应用于来自被诊断为行为变异型额颞叶痴呆(bvFTD)、阿尔茨海默病(AD)的患者以及健康对照的多模态(脑电图[EEG]和功能磁共振成像[fMRI])数据。HOFC显示出较大的效应量,与标准成对指标相比,它能更准确、更简洁地描述神经退行性疾病。神经退行性疾病的多模态表征揭示了中大型脑网络上的低连通性和高连通性,前者的贡献更大。杏仁核、脑岛和额回等区域与这两种效应都相关,表明枢纽区域可能存在代偿过程。fMRI显示,AD患者默认模式、突显、视觉和听觉网络区域之间存在低连通性,而bvFTD患者默认模式、突显和躯体运动网络区域之间存在低连通性。EEG显示,AD患者额叶、边缘叶和感觉区域之间的γ波段存在低连通性,bvFTD患者额叶、颞叶、顶叶和后部区域之间的δ波段存在低连通性,这表明存在fMRI单独无法捕捉的其他病理生理过程。分类准确性与标准生物标志物相当,并且对样本量、年龄、教育程度和运动伪影(来自fMRI和EEG)等混杂因素具有鲁棒性。我们得出结论,高阶相互作用为不同神经退行性疾病提供了详细的、与EEG和fMRI兼容的、符合生物学原理的以及心理病理学特异性的表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/726e/11195446/d4ca7243c983/nihms-1996712-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验