Suppr超能文献

机器学习在空间蛋白质组学中的应用。

Application of Machine Learning in Spatial Proteomics.

机构信息

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

出版信息

J Chem Inf Model. 2022 Dec 12;62(23):5875-5895. doi: 10.1021/acs.jcim.2c01161. Epub 2022 Nov 15.

Abstract

Spatial proteomics is an interdisciplinary field that investigates the localization and dynamics of proteins, and it has gained extensive attention in recent years, especially the subcellular proteomics. Numerous evidence indicate that the subcellular localization of proteins is associated with various cellular processes and disease progression. Mass spectrometry (MS)-based and imaging-based experimental approaches have been developed to acquire large-scale spatial proteomic data. To allow the reliable analysis of increasingly complex spatial proteomics data, machine learning (ML) methods have been widely used in both MS-based and imaging-based spatial proteomic data analysis pipelines. Here, we comprehensively survey the applications of ML in spatial proteomics from following aspects: (1) data resources for spatial proteome are comprehensively introduced; (2) the roles of different ML algorithms in data analysis pipelines are elaborated; (3) successful applications of spatial proteomics and several analytical tools integrating ML methods are presented; (4) challenges existing in modern ML-based spatial proteomics studies are discussed. This review provides guidelines for researchers seeking to apply ML methods to analyze spatial proteomic data and can facilitate insightful understanding of cell biology as well as the future research in medical and drug discovery communities.

摘要

空间蛋白质组学是一个跨学科领域,研究蛋白质的定位和动态变化,近年来受到广泛关注,特别是亚细胞蛋白质组学。大量证据表明,蛋白质的亚细胞定位与各种细胞过程和疾病进展有关。已经开发了基于质谱 (MS) 和基于成像的实验方法来获取大规模的空间蛋白质组学数据。为了能够可靠地分析日益复杂的空间蛋白质组学数据,机器学习 (ML) 方法已广泛应用于基于 MS 和基于成像的空间蛋白质组学数据分析管道中。在这里,我们从以下几个方面全面调查了 ML 在空间蛋白质组学中的应用:(1)全面介绍了空间蛋白质组的数据资源;(2)阐述了不同 ML 算法在数据分析管道中的作用;(3)介绍了空间蛋白质组学的成功应用和几个集成 ML 方法的分析工具;(4)讨论了现代基于 ML 的空间蛋白质组学研究中存在的挑战。本综述为寻求应用 ML 方法分析空间蛋白质组学数据的研究人员提供了指导,并有助于深入了解细胞生物学以及医学和药物发现领域的未来研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验