Suppr超能文献

使用平滑算法自动估计电子健康记录中最可能的药物组合:开发与验证研究

Automatic Estimation of the Most Likely Drug Combination in Electronic Health Records Using the Smooth Algorithm: Development and Validation Study.

作者信息

Ouchi Dan, Giner-Soriano Maria, Gómez-Lumbreras Ainhoa, Vedia Urgell Cristina, Torres Ferran, Morros Rosa

机构信息

Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Barcelona, Spain.

Facultat de Medicina. Departament de Farmacologia, Toxicologia i Terapèutica, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Spain.

出版信息

JMIR Med Inform. 2022 Nov 15;10(11):e37976. doi: 10.2196/37976.

Abstract

BACKGROUND

Since the use of electronic health records (EHRs) in an automated way, pharmacovigilance or pharmacoepidemiology studies have been used to characterize the therapy using different algorithms. Although progress has been made in this area for monotherapy, with combinations of 2 or more drugs the challenge to characterize the treatment increases significantly, and more research is needed.

OBJECTIVE

The goal of the research was to develop and describe a novel algorithm that automatically returns the most likely therapy of one drug or combinations of 2 or more drugs over time.

METHODS

We used the Information System for Research in Primary Care as our reference EHR platform for the smooth algorithm development. The algorithm was inspired by statistical methods based on moving averages and depends on a parameter Wt, a flexible window that determines the level of smoothing. The effect of Wt was evaluated in a simulation study on the same data set with different window lengths. To understand the algorithm performance in a clinical or pharmacological perspective, we conducted a validation study. We designed 4 pharmacological scenarios and asked 4 independent professionals to compare a traditional method against the smooth algorithm. Data from the simulation and validation studies were then analyzed.

RESULTS

The Wt parameter had an impact over the raw data. As we increased the window length, more patient were modified and the number of smoothed patients augmented, although we rarely observed changes of more than 5% of the total data. In the validation study, significant differences were obtained in the performance of the smooth algorithm over the traditional method. These differences were consistent across pharmacological scenarios.

CONCLUSIONS

The smooth algorithm is an automated approach that standardizes, simplifies, and improves data processing in drug exposition studies using EHRs. This algorithm can be generalized to almost any pharmacological medication and model the drug exposure to facilitate the detection of treatment switches, discontinuations, and terminations throughout the study period.

摘要

背景

自从以自动化方式使用电子健康记录(EHR)以来,药物警戒或药物流行病学研究已被用于使用不同算法来描述治疗情况。尽管在单药治疗这一领域已取得进展,但对于两种或更多药物的联合使用,描述治疗情况的挑战显著增加,还需要更多研究。

目的

该研究的目标是开发并描述一种新颖的算法,该算法能随时间自动返回一种药物或两种或更多药物组合的最可能治疗方案。

方法

我们使用基层医疗研究信息系统作为我们用于顺利开发算法的参考EHR平台。该算法受基于移动平均值的统计方法启发,并且依赖于参数Wt,这是一个灵活的窗口,用于确定平滑程度。在对同一数据集进行的不同窗口长度的模拟研究中评估了Wt的效果。为了从临床或药理学角度理解算法性能,我们进行了一项验证研究。我们设计了4种药理学场景,并让4名独立专业人员将一种传统方法与平滑算法进行比较。然后对模拟和验证研究的数据进行了分析。

结果

Wt参数对原始数据有影响。随着我们增加窗口长度,更多患者的数据被修改,平滑处理的患者数量增加,尽管我们很少观察到超过总数据5%的变化。在验证研究中,平滑算法在性能上与传统方法相比存在显著差异。这些差异在各种药理学场景中都是一致的。

结论

平滑算法是一种自动化方法,可在使用EHR的药物暴露研究中规范、简化并改进数据处理。该算法几乎可推广到任何药理学药物,并对药物暴露进行建模,以利于在整个研究期间检测治疗方案的转换、中断和终止。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af48/9709675/5c6c9922369a/medinform_v10i11e37976_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验