Taylor Cameron R, Clark William H, Clarrissimeaux Ellen G, Yeon Seong Ho, Carty Matthew J, Lipsitz Stuart R, Bronson Roderick T, Roberts Thomas J, Herr Hugh M
K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States.
Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, United States.
Front Bioeng Biotechnol. 2022 Oct 25;10:1010276. doi: 10.3389/fbioe.2022.1010276. eCollection 2022.
Human movement is accomplished through muscle contraction, yet there does not exist a portable system capable of monitoring muscle length changes in real time. To address this limitation, we previously introduced magnetomicrometry, a minimally-invasive tracking technique comprising two implanted magnetic beads in muscle and a magnetic field sensor array positioned on the body's surface adjacent the implanted beads. The implant system comprises a pair of spherical magnetic beads, each with a first coating of nickel-copper-nickel and an outer coating of Parylene C. In parallel work, we demonstrate submillimeter accuracy of magnetic bead tracking for muscle contractions in an untethered freely-roaming avian model. Here, we address the clinical viability of magnetomicrometry. Using a specialized device to insert magnetic beads into muscle in avian and lagomorph models, we collect data to assess gait metrics, bead migration, and bead biocompatibility. For these animal models, we find no gait differences post-versus pre-implantation, and bead migration towards one another within muscle does not occur for initial bead separation distances greater than 3 cm. Further, using extensive biocompatibility testing, the implants are shown to be non-irritant, non-cytotoxic, non-allergenic, and non-irritating. Our cumulative results lend support for the viability of these magnetic bead implants for implantation in human muscle. We thus anticipate their imminent use in human-machine interfaces, such as in control of prostheses and exoskeletons and in closed-loop neuroprosthetics to aid recovery from neurological disorders.
人体运动是通过肌肉收缩来完成的,但目前还不存在一种能够实时监测肌肉长度变化的便携式系统。为了解决这一局限性,我们之前引入了磁微测量法,这是一种微创跟踪技术,包括在肌肉中植入两颗磁珠以及在身体表面靠近植入磁珠的位置设置一个磁场传感器阵列。植入系统包括一对球形磁珠,每个磁珠都有一层镍 - 铜 - 镍的第一涂层和一层聚对二甲苯 C 的外涂层。在并行研究中,我们证明了在无束缚自由活动的禽类模型中,磁珠跟踪对于肌肉收缩具有亚毫米级的精度。在此,我们探讨磁微测量法的临床可行性。我们使用一种专门的设备将磁珠插入禽类和兔类模型的肌肉中,收集数据以评估步态指标、磁珠迁移和磁珠生物相容性。对于这些动物模型,我们发现植入前后步态没有差异,并且当初始磁珠分离距离大于 3 厘米时,肌肉内的磁珠不会相互迁移。此外,通过广泛的生物相容性测试表明,这些植入物无刺激性、无细胞毒性、无致敏性且不会引起刺激。我们的累积结果支持了这些磁珠植入物在人体肌肉中植入的可行性。因此,我们预计它们将很快应用于人机接口,例如用于控制假肢和外骨骼以及用于闭环神经假体以帮助从神经系统疾病中恢复。