Bristol Myers Squibb, St. Louis, MO, USA.
McMaster University, Hamilton, Canada.
Qual Life Res. 2023 May;32(5):1239-1246. doi: 10.1007/s11136-022-03297-7. Epub 2022 Nov 18.
Anchor-based methods are group-level approaches used to derive clinical outcome assessment (COA) interpretation thresholds of meaningful within-patient change over time for understanding impacts of disease and treatment. The methods explore the associations between change in the targeted concept of the COA measure and the concept measured by the external anchor(s), typically a global rating, chosen as easier to interpret than the COA measure. While they are valued for providing plausible interpretation thresholds, group-level anchor-based methods pose a number of inherent theoretical and methodological conundrums for interpreting individual-level change.
This investigation provides a critical appraisal of anchor-based methods for COA interpretation thresholds and details key biases in anchor-based methods that directly influences the magnitude of the interpretation threshold.
Five important research issues inherent with the use of anchor-based methods deserve attention: (1) global estimates of change are consistently biased toward the present state; (2) the use of static current state global measures, while not subject to artifacts of recall, may exacerbate the problem of estimating clinically meaningful change; (3) the specific anchor assessment response(s) that identify the meaningful change group usually involves an arbitrary judgment; (4) the calculated interpretation thresholds are sensitive to the proportion of patients who have improved; and (5) examination of anchor-based regression methods reveals that the correlation between the COA change scores and the anchor has a direct linear relationship to the magnitude of the interpretation threshold derived using an anchor-based approach; stronger correlations yielding larger interpretation thresholds.
While anchor-based methods are recognized for their utility in deriving interpretation thresholds for COAs, attention to the biases associated with estimation of the threshold using these methods is needed to progress in the development of standard-setting methodologies for COAs.
基于锚点的方法是一种群体水平的方法,用于随着时间的推移为理解疾病和治疗的影响,推导出针对临床结果评估(COA)的有意义的个体内变化的临床解释阈值。这些方法探索了 COA 测量的目标概念的变化与外部锚(通常是全球评分)所测量的概念之间的关联,该外部锚被选择为比 COA 测量更易于解释。虽然它们在提供合理的解释阈值方面很有价值,但基于群体的锚点方法在解释个体水平的变化方面存在许多固有的理论和方法上的难题。
本研究对 COA 解释阈值的基于锚点的方法进行了批判性评估,并详细说明了基于锚点的方法中直接影响解释阈值大小的关键偏差。
使用基于锚点的方法所固有的五个重要研究问题值得关注:(1)全球变化估计值始终偏向当前状态;(2)使用静态当前状态的全球测量值,虽然不受回忆的影响,但可能会加剧估计有临床意义的变化的问题;(3)确定有意义的变化组的特定锚评估反应通常涉及任意判断;(4)计算出的解释阈值对改善患者的比例敏感;(5)对基于锚点的回归方法的检查表明,COA 变化分数与锚之间的相关性与使用基于锚点的方法得出的解释阈值的大小直接线性相关;相关性越强,得出的解释阈值越大。
虽然基于锚点的方法因其在推导出 COA 的解释阈值方面的实用性而得到认可,但需要注意使用这些方法估计阈值时存在的偏差,以推进 COA 标准制定方法的发展。