Suppr超能文献

用于与芯片肝脏原型集成的样品和营养培养基连续灌注的3D打印阻抗微泵。

3D-Printed Impedance Micropump for Continuous Perfusion of the Sample and Nutrient Medium Integrated with a Liver-On-Chip Prototype.

作者信息

Dhwaj Amar, Roy Nimisha, Jaiswar Ankur, Prabhakar Amit, Verma Deepti

机构信息

Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, Uttar Pradesh211015, India.

Department of Chemistry, Allahabad University, Prayagraj, Uttar Pradesh211002, India.

出版信息

ACS Omega. 2022 Nov 4;7(45):40900-40910. doi: 10.1021/acsomega.2c03818. eCollection 2022 Nov 15.

Abstract

In recent decades, organ-on-chip devices have gained substantial interest as an alternative for studying the pathophysiological processes relevant to drug screening. Micropumps are being utilized to simulate the in vivo physiological fluid flow more realistically in these organ-on-chip devices. Micropumps play a crucial role in pumping, perfusion, and circulation of fluids in various microdevices such as on-chip PCR, DNA microarrays, miniature bioreactor cell separation, and lab-on-chip biosensing platforms. With the rapid growth in technology, efficient pumping for proper circulation of media and nutrients has become imperative. In this study, we have described the design and development of an open-source impedance micropump for continuous perfusion of nutrient medium in a liver-on-chip prototype. This micropump is controlled via an integrated microcontroller board, with an observed flow rate ranging from 0.2 to 2 mL/min. Google Sketchup 2020 and DLP 3D printing were used to fabricate small precise parts of the impedance micropump. The flow rate was measured to characterize the actuating performance of the micropump. The poly-dimethyl siloxane-based liver-on-chip prototype has been fabricated using a soft photolithography procedure. Further, a study of continuous perfusion of culture medium through the liver-on-chip containing the Hepg2 cell line was successfully performed by integrating it with the impedance micropump. Hoechst staining and Alamar Blue observed cell viability to confirm the healthy cell growth inside the liver-on-chip microfluidic chip. The compactness of the overall setup allows it to fit in a Petri plate, eliminating chances of contamination while cell handling.

摘要

近几十年来,芯片器官装置作为研究与药物筛选相关的病理生理过程的一种替代方法,已引起了广泛关注。在这些芯片器官装置中,微泵被用于更逼真地模拟体内生理流体流动。微泵在诸如芯片上的聚合酶链反应、DNA微阵列、微型生物反应器细胞分离以及芯片实验室生物传感平台等各种微型装置中的流体泵送、灌注和循环中起着至关重要的作用。随着技术的快速发展,为使培养基和营养物质正常循环而进行高效泵送变得势在必行。在本研究中,我们描述了一种用于在芯片肝脏原型中连续灌注营养培养基的开源阻抗微泵的设计与开发。该微泵通过集成微控制器板进行控制,观察到的流速范围为0.2至2毫升/分钟。使用谷歌草图大师2020和数字光处理3D打印来制造阻抗微泵的小型精密部件。测量流速以表征微泵的驱动性能。基于聚二甲基硅氧烷的芯片肝脏原型是使用软光刻工艺制造的。此外,通过将含有Hepg2细胞系的芯片肝脏与阻抗微泵集成,成功地进行了培养基通过芯片肝脏的连续灌注研究。通过Hoechst染色和alamar蓝检测观察细胞活力,以确认芯片肝脏微流控芯片内细胞的健康生长。整个装置的紧凑性使其能够放入培养皿中,在细胞处理过程中消除了污染的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b1a/9670287/f93c8c7c8d05/ao2c03818_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验