IEEE Trans Pattern Anal Mach Intell. 2023 Jun;45(6):7239-7257. doi: 10.1109/TPAMI.2022.3223688. Epub 2023 May 5.
Visual and audio signals often coexist in natural environments, forming audio-visual events (AVEs). Given a video, we aim to localize video segments containing an AVE and identify its category. It is pivotal to learn the discriminative features for each video segment. Unlike existing work focusing on audio-visual feature fusion, in this paper, we propose a new contrastive positive sample propagation (CPSP) method for better deep feature representation learning. The contribution of CPSP is to introduce the available full or weak label as a prior that constructs the exact positive-negative samples for contrastive learning. Specifically, the CPSP involves comprehensive contrastive constraints: pair-level positive sample propagation (PSP), segment-level and video-level positive sample activation (PSA and PSA ). Three new contrastive objectives are proposed (i.e., [Formula: see text], [Formula: see text], and [Formula: see text]) and introduced into both the fully and weakly supervised AVE localization. To draw a complete picture of the contrastive learning in AVE localization, we also study the self-supervised positive sample propagation (SSPSP). As a result, CPSP is more helpful to obtain the refined audio-visual features that are distinguishable from the negatives, thus benefiting the classifier prediction. Extensive experiments on the AVE and the newly collected VGGSound-AVEL100k datasets verify the effectiveness and generalization ability of our method.
视觉和音频信号在自然环境中经常共存,形成视听事件(AVEs)。给定一个视频,我们的目标是定位包含 AVE 的视频片段并识别其类别。学习每个视频片段的有区别的特征是至关重要的。与现有的专注于视听特征融合的工作不同,在本文中,我们提出了一种新的对比正样本传播(CPSP)方法,用于更好地进行深度特征表示学习。CPSP 的贡献在于引入可用的全或弱标签作为构建对比学习的确切正-负样本的先验。具体来说,CPSP 涉及全面的对比约束:对级正样本传播(PSP)、段级和视频级正样本激活(PSA 和 PSA )。提出了三个新的对比目标(即 [Formula: see text]、[Formula: see text] 和 [Formula: see text]),并将其引入到完全和弱监督的 AVE 定位中。为了全面了解 AVE 定位中的对比学习,我们还研究了自监督正样本传播(SSPSP)。结果表明,CPSP 更有助于获得可与负样本区分开的精细化视听特征,从而有利于分类器预测。在 AVE 和新收集的 VGGSound-AVEL100k 数据集上的广泛实验验证了我们方法的有效性和泛化能力。