Suppr超能文献

从合成数据中学习,实现无参考奈奎斯特鬼校正和回波平面成像的并行成像重建。

Learning from synthetic data for reference-free Nyquist ghost correction and parallel imaging reconstruction of echo planar imaging.

机构信息

Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China.

Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

出版信息

Med Phys. 2023 Apr;50(4):2135-2147. doi: 10.1002/mp.16107. Epub 2022 Dec 5.

Abstract

BACKGROUND

Echo planar imaging (EPI) suffers from Nyquist ghost caused by eddy currents and other non-ideal factors. Deep learning has received interest for EPI ghost correction. However, large datasets with qualified labels are usually unavailable, especially for the under-sampled EPI data due to the imperfection of traditional ghost correction algorithms.

PURPOSE

To develop a multi-coil synthetic-data-based deep learning method for the Nyquist ghost correction and reconstruction of under-sampled EPI.

METHODS

Our network is trained purely with synthetic data. The labels of the training samples are generated by combining a public magnetic resonance imaging dataset and a few pre-collected coil sensitivity maps. The input is synthesized by under-sampling (for the accelerated case) and adding phase errors between the even and odd echoes of the label. To bridge the gap between synthetic data and data from real acquisition, linear and non-linear 2D phase errors are considered during the training data generation.

RESULTS

The proposed method outperformed the existing mainstream approaches in several experiments. The average ghost-to-signal ratios of our/3-line navigator-based methods were 0.51%/5.36% and 0.42%/8.64% in fully-sampled and under-sampled in vivo experiments, respectively. In the sagittal experiments, our method successfully corrected higher-order and 2D phase errors. Our method also outperformed other reference-based methods on motion-corrupted data. In the simulation experiments, the peak signal-to-noise ratios were 37.6/38.3 dB for 2D linear/non-linear simulated phase errors, indicating that our method was consistently reliable for different kinds of phase errors.

CONCLUSION

Our method achieves superb ghost correction and parallel imaging reconstruction without any calibration information, and can be readily adapted to other EPI-based applications.

摘要

背景

平面回波成像(EPI)会受到涡流和其他非理想因素引起的奈奎斯特鬼像的影响。深度学习在 EPI 鬼像校正中受到关注。然而,由于传统鬼像校正算法的不完善,通常无法获得带有合格标签的大型数据集,尤其是对于欠采样的 EPI 数据。

目的

开发一种基于多通道合成数据的深度学习方法,用于校正和重建欠采样 EPI 的奈奎斯特鬼像。

方法

我们的网络完全通过合成数据进行训练。训练样本的标签是通过结合公共磁共振成像数据集和少量预先采集的线圈灵敏度图生成的。输入是通过欠采样(对于加速情况)和在标签的偶数回波和奇数回波之间添加相位误差来合成的。为了弥合合成数据与真实采集数据之间的差距,在生成训练数据时考虑了线性和非线性 2D 相位误差。

结果

在几项实验中,所提出的方法优于现有的主流方法。在完全采样和欠采样的体内实验中,我们的基于 3 线导航器的方法的平均鬼像与信号比分别为 0.51%/5.36%和 0.42%/8.64%。在矢状实验中,我们的方法成功校正了更高阶和 2D 相位误差。我们的方法在运动伪影数据上也优于其他基于参考的方法。在模拟实验中,2D 线性/非线性模拟相位误差的峰值信噪比分别为 37.6/38.3dB,表明我们的方法对不同类型的相位误差始终可靠。

结论

我们的方法在没有任何校准信息的情况下实现了出色的鬼像校正和并行成像重建,并且可以很容易地适应其他基于 EPI 的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验