Suppr超能文献

人群归因分数在生存时间数据中的应用。

The population-attributable fraction for time-to-event data.

机构信息

Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.

University of Paris, IAME, INSERM, Paris, France.

出版信息

Int J Epidemiol. 2023 Jun 6;52(3):837-845. doi: 10.1093/ije/dyac217.

Abstract

BACKGROUND

Even though the population-attributable fraction (PAF) is a well-established metric, it is often incorrectly estimated or interpreted not only in clinical application, but also in statistical research articles. The risk of bias is especially high in more complex time-to-event data settings.

METHODS

We explain how the PAF can be defined, identified and estimated in time-to-event settings with competing risks and time-dependent exposures. By using multi-state methodology and inverse probability weighting, we demonstrate how to reduce or completely avoid severe types of biases including competing risks bias, immortal time bias and confounding due to both baseline and time-varying patient characteristics.

RESULTS

The method is exemplarily applied to a real data set. Moreover, we estimate the number of deaths that were attributable to ventilator-associated pneumonia in France in the year 2016. The example demonstrates how, under certain simplifying assumptions, PAF estimates can be extrapolated to a target population of interest.

CONCLUSIONS

Defining and estimating the PAF in advanced time-to-event settings within a framework that unifies causal and multi-state modelling enables to tackle common sources of bias and allows straightforward implementation with standard software packages.

摘要

背景

尽管人群归因分数(PAF)是一种既定的指标,但它不仅在临床应用中,而且在统计研究文章中经常被错误地估计或解释。在更复杂的事件时间数据环境中,偏倚的风险尤其高。

方法

我们解释了如何在存在竞争风险和时变暴露的事件时间环境中定义、识别和估计 PAF。通过使用多状态方法和逆概率加权,我们展示了如何减少或完全避免严重的偏倚类型,包括竞争风险偏倚、不朽时间偏倚以及由于基线和时变患者特征引起的混杂。

结果

该方法被示例应用于真实数据集。此外,我们估计了 2016 年法国与呼吸机相关性肺炎相关的死亡人数。该示例说明了在某些简化假设下,PAF 估计值如何可以外推到目标人群。

结论

在统一因果和多状态建模框架中定义和估计高级事件时间环境中的 PAF,可以解决常见的偏倚来源,并允许使用标准软件包进行直接实施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验