Suppr超能文献

一种预测 IgG1 和 IgG4(P) mAbs 在常见储存缓冲液中聚集倾向的计算方法。

A computational method for predicting the aggregation propensity of IgG1 and IgG4(P) mAbs in common storage buffers.

机构信息

UCB Pharma, 208 Bath Road, Slough SL1 3WE, UK.

出版信息

MAbs. 2022 Jan-Dec;14(1):2138092. doi: 10.1080/19420862.2022.2138092.

Abstract

The propensity for some monoclonal antibodies (mAbs) to aggregate at physiological and manufacturing pH values can prevent their use as therapeutic molecules or delay time to market. Consequently, developability assessments are essential to select optimum candidates, or inform on mitigation strategies to avoid potential late-stage failures. These studies are typically performed in a range of buffer solutions because factors such as pH can dramatically alter the aggregation propensity of the test mAbs (up to 100-fold in extreme cases). A computational method capable of robustly predicting the aggregation propensity at the pH values of common storage buffers would have substantial value. Here, we describe a mAb aggregation prediction tool (MAPT) that builds on our previously published isotype-dependent, charge-based model of aggregation. We show that the addition of a homology model-derived hydrophobicity descriptor to our electrostatic aggregation model enabled the generation of a robust mAb developability indicator. To contextualize our aggregation scoring system, we analyzed 97 clinical-stage therapeutic mAbs. To further validate our approach, we focused on six mAbs (infliximab, tocilizumab, rituximab, CNTO607, MEDI1912 and MEDI1912_STT) which have been reported to cover a large range of aggregation propensities. The different aggregation propensities of the case study molecules at neutral and slightly acidic pH were correctly predicted, verifying the utility of our computational method.

摘要

一些单克隆抗体(mAbs)在生理和制造 pH 值下聚集的倾向可能会阻止它们作为治疗分子使用或延迟上市时间。因此,开发性评估对于选择最佳候选物或提供避免潜在后期失败的缓解策略至关重要。这些研究通常在一系列缓冲溶液中进行,因为 pH 等因素可以极大地改变测试 mAbs 的聚集倾向(在极端情况下高达 100 倍)。一种能够在常见储存缓冲液的 pH 值下可靠预测聚集倾向的计算方法将具有重要价值。在这里,我们描述了一种 mAb 聚集预测工具 (MAPT),它基于我们之前发表的基于同种型的、基于电荷的聚集模型。我们表明,将同源模型衍生的疏水性描述符添加到我们的静电聚集模型中,使我们能够生成稳健的 mAb 开发性指标。为了使我们的聚集评分系统具有上下文相关性,我们分析了 97 种临床阶段的治疗性 mAb。为了进一步验证我们的方法,我们集中研究了六种 mAb(英夫利昔单抗、托珠单抗、利妥昔单抗、CNTO607、MEDI1912 和 MEDI1912_STT),它们已被报道具有广泛的聚集倾向。案例研究分子在中性和略酸性 pH 下的不同聚集倾向得到了正确预测,验证了我们计算方法的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa25/9704409/e0f5b3add7cb/KMAB_A_2138092_F0001_B.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验