Suppr超能文献

基于离散小波变换和反向传播神经网络相结合的电力变压器绕组绕组对地故障定位

Winding-to-ground fault location in power transformer windings using combination of discrete wavelet transform and back-propagation neural network.

作者信息

Chiradeja Pathomthat, Ngaopitakkul Atthapol

机构信息

Faculty of Engineering, Srinakharinwirot University, Bangkok, Thailand.

School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.

出版信息

Sci Rep. 2022 Nov 23;12(1):20157. doi: 10.1038/s41598-022-24434-9.

Abstract

Power transformers are important equipment in power systems and require a responsive and accurate protection system to ensure system reliability. In this paper, a fault location algorithm for power transformers based on the discrete wavelet transform and back-propagation neural network is presented. The system is modelled on part of Thailand's transmission and distribution system. The ATP/EMTP software is used to simulate fault signals to validate the proposed algorithm, and the performance is evaluated under various conditions. In addition, various activation functions in the hidden and output layers are compared to select suitable functions for the algorithm. Test results show that the proposed algorithm can correctly locate faults on the transformer winding under different conditions with an average error of less than 0.1%. This result demonstrates the feasibility of implementing the proposed algorithm in actual protection systems for power transformers.

摘要

电力变压器是电力系统中的重要设备,需要一个响应迅速且准确的保护系统来确保系统可靠性。本文提出了一种基于离散小波变换和反向传播神经网络的电力变压器故障定位算法。该系统以泰国输配电系统的一部分为模型。使用ATP/EMTP软件模拟故障信号以验证所提出的算法,并在各种条件下评估其性能。此外,还比较了隐藏层和输出层中的各种激活函数,以选择适合该算法的函数。测试结果表明,所提出的算法能够在不同条件下正确定位变压器绕组上的故障,平均误差小于0.1%。这一结果证明了在所提出的算法在电力变压器实际保护系统中实施的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec7/9684536/792417e134ad/41598_2022_24434_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验