Suppr超能文献

一种用于量子热力学的施密特分解方法。

A Schmidt Decomposition Approach to Quantum Thermodynamics.

作者信息

Malavazi André Hernandes Alves, Brito Frederico

机构信息

Instituto de Física de São Carlos, Universidade de São Paulo, C.P. 369, São Carlos 13560-970, SP, Brazil.

出版信息

Entropy (Basel). 2022 Nov 12;24(11):1645. doi: 10.3390/e24111645.

Abstract

The development of a self-consistent thermodynamic theory of quantum systems is of fundamental importance for modern physics. Still, despite its essential role in quantum science and technology, there is no unifying formalism for characterizing the thermodynamics within general autonomous quantum systems, and many fundamental open questions remain unanswered. Along these lines, most current efforts and approaches restrict the analysis to particular scenarios of approximative descriptions and semi-classical regimes. Here, we propose a novel approach to describe the thermodynamics of arbitrary bipartite autonomous quantum systems based on the well-known Schmidt decomposition. This formalism provides a simple, exact, and symmetrical framework for expressing the energetics between interacting systems, including scenarios beyond the standard description regimes, such as strong coupling. We show that this procedure allows straightforward identification of local effective operators suitable for characterizing the physical local internal energies. We also demonstrate that these quantities naturally satisfy the usual thermodynamic notion of energy additivity.

摘要

发展自洽的量子系统热力学理论对现代物理学至关重要。然而,尽管其在量子科学与技术中起着关键作用,但对于一般自治量子系统内的热力学特征描述,尚无统一的形式体系,许多基本的开放性问题仍未得到解答。沿着这些思路,当前大多数努力和方法都将分析限制在近似描述和半经典区域的特定情形。在此,我们基于著名的施密特分解提出一种新颖的方法来描述任意二分自治量子系统的热力学。这种形式体系为表达相互作用系统之间的能量学提供了一个简单、精确且对称的框架,包括超出标准描述区域的情形,如强耦合。我们表明,该过程允许直接识别适用于表征物理局部内能的局部有效算符。我们还证明,这些量自然满足能量可加性这一通常的热力学概念。

相似文献

1
A Schmidt Decomposition Approach to Quantum Thermodynamics.
Entropy (Basel). 2022 Nov 12;24(11):1645. doi: 10.3390/e24111645.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022142. doi: 10.1103/PhysRevE.92.022142. Epub 2015 Aug 26.
4
Order stability via Fröhlich condensation in bio, eco, and social systems: The quantum-like approach.
Biosystems. 2022 Feb;212:104593. doi: 10.1016/j.biosystems.2021.104593. Epub 2021 Dec 29.
5
Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations.
Entropy (Basel). 2018 May 31;20(6):423. doi: 10.3390/e20060423.
6
Existence of an information unit as a postulate of quantum theory.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16373-7. doi: 10.1073/pnas.1304884110. Epub 2013 Sep 23.
7
Rayleigh-Schrödinger Perturbation Theory and Nonadditive Thermodynamics.
J Phys Chem B. 2023 Jun 8;127(22):5089-5093. doi: 10.1021/acs.jpcb.3c01525. Epub 2023 May 25.
8
Quantum thermodynamics of single particle systems.
Sci Rep. 2020 Aug 11;10(1):13500. doi: 10.1038/s41598-020-70450-y.
9
Gauge-Invariant Quantum Thermodynamics: Consequences for the First Law.
Entropy (Basel). 2024 Jan 25;26(2):111. doi: 10.3390/e26020111.
10
Repeated Interactions and Quantum Stochastic Thermodynamics at Strong Coupling.
Phys Rev Lett. 2019 Nov 1;123(18):180604. doi: 10.1103/PhysRevLett.123.180604.

本文引用的文献

1
Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State.
Phys Rev Lett. 2021 Dec 17;127(25):250601. doi: 10.1103/PhysRevLett.127.250601.
2
Unraveling the role of coherence in the first law of quantum thermodynamics.
Phys Rev E. 2020 Dec;102(6-1):062152. doi: 10.1103/PhysRevE.102.062152.
3
Classical dynamical coarse-grained entropy and comparison with the quantum version.
Phys Rev E. 2020 Sep;102(3-1):032106. doi: 10.1103/PhysRevE.102.032106.
4
Strong Coupling Thermodynamics of Open Quantum Systems.
Phys Rev Lett. 2020 Apr 24;124(16):160601. doi: 10.1103/PhysRevLett.124.160601.
5
Repeated Interactions and Quantum Stochastic Thermodynamics at Strong Coupling.
Phys Rev Lett. 2019 Nov 1;123(18):180604. doi: 10.1103/PhysRevLett.123.180604.
6
Quantum thermodynamics and open-systems modeling.
J Chem Phys. 2019 May 28;150(20):204105. doi: 10.1063/1.5096173.
7
Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines.
Phys Rev Lett. 2019 Mar 22;122(11):110601. doi: 10.1103/PhysRevLett.122.110601.
8
Energy-temperature uncertainty relation in quantum thermodynamics.
Nat Commun. 2018 Jun 6;9(1):2203. doi: 10.1038/s41467-018-04536-7.
9
Work on a quantum dipole by a single-photon pulse.
Opt Lett. 2018 Jun 1;43(11):2644-2647. doi: 10.1364/OL.43.002644.
10
Strong Coupling Corrections in Quantum Thermodynamics.
Phys Rev Lett. 2018 Mar 23;120(12):120602. doi: 10.1103/PhysRevLett.120.120602.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验