Malavazi André Hernandes Alves, Brito Frederico
Instituto de Física de São Carlos, Universidade de São Paulo, C.P. 369, São Carlos 13560-970, SP, Brazil.
Entropy (Basel). 2022 Nov 12;24(11):1645. doi: 10.3390/e24111645.
The development of a self-consistent thermodynamic theory of quantum systems is of fundamental importance for modern physics. Still, despite its essential role in quantum science and technology, there is no unifying formalism for characterizing the thermodynamics within general autonomous quantum systems, and many fundamental open questions remain unanswered. Along these lines, most current efforts and approaches restrict the analysis to particular scenarios of approximative descriptions and semi-classical regimes. Here, we propose a novel approach to describe the thermodynamics of arbitrary bipartite autonomous quantum systems based on the well-known Schmidt decomposition. This formalism provides a simple, exact, and symmetrical framework for expressing the energetics between interacting systems, including scenarios beyond the standard description regimes, such as strong coupling. We show that this procedure allows straightforward identification of local effective operators suitable for characterizing the physical local internal energies. We also demonstrate that these quantities naturally satisfy the usual thermodynamic notion of energy additivity.
发展自洽的量子系统热力学理论对现代物理学至关重要。然而,尽管其在量子科学与技术中起着关键作用,但对于一般自治量子系统内的热力学特征描述,尚无统一的形式体系,许多基本的开放性问题仍未得到解答。沿着这些思路,当前大多数努力和方法都将分析限制在近似描述和半经典区域的特定情形。在此,我们基于著名的施密特分解提出一种新颖的方法来描述任意二分自治量子系统的热力学。这种形式体系为表达相互作用系统之间的能量学提供了一个简单、精确且对称的框架,包括超出标准描述区域的情形,如强耦合。我们表明,该过程允许直接识别适用于表征物理局部内能的局部有效算符。我们还证明,这些量自然满足能量可加性这一通常的热力学概念。