Suppr超能文献

基于聚类数据的倾向评分匹配方法概述。

An overview of propensity score matching methods for clustered data.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

Stat Methods Med Res. 2023 Apr;32(4):641-655. doi: 10.1177/09622802221133556. Epub 2022 Nov 25.

Abstract

Propensity score matching is commonly used in observational studies to control for confounding and estimate the causal effects of a treatment or exposure. Frequently, in observational studies data are clustered, which adds to the complexity of using propensity score techniques. In this article, we give an overview of propensity score matching methods for clustered data, and highlight how propensity score matching can be used to account for not just measured confounders, but also unmeasured cluster level confounders. We also consider using machine learning methods such as generalized boosted models to estimate the propensity score and show that accounting for clustering when using these methods can greatly reduce the performance, particularly when there are a large number of clusters and a small number of subjects per cluster. In order to get around this we highlight scenarios where it may be possible to control for measured covariates using propensity score matching, while using fixed effects regression in the outcome model to control for cluster level covariates. Using simulation studies we compare the performance of different propensity score matching methods for clustered data across a number of different settings. Finally, as an illustrative example we apply propensity score matching methods for clustered data to study the causal effect of aspirin on hearing deterioration using data from the conservation of hearing study.

摘要

倾向评分匹配常用于观察性研究,以控制混杂并估计治疗或暴露的因果效应。在观察性研究中,数据经常是聚类的,这增加了使用倾向评分技术的复杂性。在本文中,我们概述了用于聚类数据的倾向评分匹配方法,并强调了如何使用倾向评分匹配不仅可以控制测量的混杂因素,还可以控制未测量的聚类水平混杂因素。我们还考虑使用机器学习方法(如广义增强模型)来估计倾向评分,并表明在使用这些方法时考虑聚类可以大大降低性能,特别是在有大量聚类且每个聚类中的受试者数量较少的情况下。为了克服这一问题,我们强调了在使用倾向评分匹配控制测量协变量的情况下,在结果模型中使用固定效应回归来控制聚类水平协变量的情况。我们通过模拟研究比较了不同倾向评分匹配方法在多种不同设置下对聚类数据的性能。最后,作为一个说明性示例,我们应用聚类数据的倾向评分匹配方法来研究阿司匹林对听力恶化的因果效应,使用来自听力保护研究的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76d8/10119899/3a84879f06bb/10.1177_09622802221133556-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验