Suppr超能文献

适用于生物医学研究的高度稳健因果半参数U统计量。

Highly robust causal semiparametric U-statistic with applications in biomedical studies.

作者信息

Yin Anqi, Yuan Ao, Tan Ming T

机构信息

Department of Biostatistics, Bioinformatics and Biomathematics Georgetown University, Washington, DC 20057, USA.

出版信息

Int J Biostat. 2022 Nov 28;20(1):69-91. doi: 10.1515/ijb-2022-0047. eCollection 2024 May 1.

Abstract

With our increased ability to capture large data, causal inference has received renewed attention and is playing an ever-important role in biomedicine and economics. However, one major methodological hurdle is that existing methods rely on many unverifiable model assumptions. Thus robust modeling is a critically important approach complementary to sensitivity analysis, where it compares results under various model assumptions. The more robust a method is with respect to model assumptions, the more worthy it is. The doubly robust estimator (DRE) is a significant advance in this direction. However, in practice, many outcome measures are functionals of multiple distributions, and so are the associated estimands, which can only be estimated via U-statistics. Thus most existing DREs do not apply. This article proposes a broad class of highly robust U-statistic estimators (HREs), which use semiparametric specifications for both the propensity score and outcome models in constructing the U-statistic. Thus, the HRE is more robust than the existing DREs. We derive comprehensive asymptotic properties of the proposed estimators and perform extensive simulation studies to evaluate their finite sample performance and compare them with the corresponding parametric U-statistics and the naive estimators, which show significant advantages. Then we apply the method to analyze a clinical trial from the AIDS Clinical Trials Group.

摘要

随着我们获取大数据能力的增强,因果推断受到了新的关注,并在生物医学和经济学中发挥着越来越重要的作用。然而,一个主要的方法障碍是现有方法依赖于许多无法验证的模型假设。因此,稳健建模是一种与敏感性分析互补的至关重要的方法,敏感性分析是在各种模型假设下比较结果。一种方法对模型假设越稳健,其价值就越高。双重稳健估计器(DRE)是朝着这个方向迈出的重要一步。然而,在实际中,许多结果度量是多个分布的泛函,相关的估计量也是如此,这只能通过U统计量来估计。因此,现有的大多数DRE都不适用。本文提出了一类广泛的高度稳健的U统计量估计器(HRE),它在构建U统计量时对倾向得分和结果模型都使用半参数规范。因此,HRE比现有的DRE更稳健。我们推导了所提出估计器的全面渐近性质,并进行了广泛的模拟研究,以评估它们的有限样本性能,并将它们与相应的参数U统计量和朴素估计器进行比较,结果显示出显著优势。然后我们应用该方法分析了艾滋病临床试验组的一项临床试验。

相似文献

1
Highly robust causal semiparametric U-statistic with applications in biomedical studies.
Int J Biostat. 2022 Nov 28;20(1):69-91. doi: 10.1515/ijb-2022-0047. eCollection 2024 May 1.
2
Data-Adaptive Bias-Reduced Doubly Robust Estimation.
Int J Biostat. 2016 May 1;12(1):253-82. doi: 10.1515/ijb-2015-0029.
3
A semiparametric multiply robust multiple imputation method for causal inference.
Metrika. 2023 Jul;86(5):517-542. doi: 10.1007/s00184-022-00883-0. Epub 2022 Sep 12.
4
Relaxed Doubly Robust Estimation in Causal Inference.
Stat Theory Relat Fields. 2024;8(1):69-79. doi: 10.1080/24754269.2024.2313826. Epub 2024 Feb 8.
5
Model misspecification and bias for inverse probability weighting estimators of average causal effects.
Biom J. 2023 Feb;65(2):e2100118. doi: 10.1002/bimj.202100118. Epub 2022 Aug 31.
6
Stratified doubly robust estimators for the average causal effect.
Biometrics. 2014 Jun;70(2):270-7. doi: 10.1111/biom.12157. Epub 2014 Feb 26.
7
On semiparametric estimation of a path-specific effect in the presence of mediator-outcome confounding.
Biometrika. 2020 Mar;107(1):159-172. doi: 10.1093/biomet/asz063. Epub 2019 Nov 23.
9
Statistical inference for data-adaptive doubly robust estimators with survival outcomes.
Stat Med. 2019 Jul 10;38(15):2735-2748. doi: 10.1002/sim.8156. Epub 2019 Apr 4.
10
Improving causal inference with a doubly robust estimator that combines propensity score stratification and weighting.
J Eval Clin Pract. 2017 Aug;23(4):697-702. doi: 10.1111/jep.12714. Epub 2017 Jan 24.

本文引用的文献

2
Comparison of empirical Bayes and propensity score methods for road safety evaluation: A simulation study.
Accid Anal Prev. 2019 Aug;129:148-155. doi: 10.1016/j.aap.2019.05.015. Epub 2019 May 28.
3
Causal estimands and confidence intervals associated with Wilcoxon-Mann-Whitney tests in randomized experiments.
Stat Med. 2018 Sep 10;37(20):2923-2937. doi: 10.1002/sim.7799. Epub 2018 May 17.
4
Introduction to Double Robust Methods for Incomplete Data.
Stat Sci. 2018;33(2):184-197. doi: 10.1214/18-STS647.
5
Propensity score matching and subclassification in observational studies with multi-level treatments.
Biometrics. 2016 Dec;72(4):1055-1065. doi: 10.1111/biom.12505. Epub 2016 Mar 17.
6
Increasing the power of the Mann-Whitney test in randomized experiments through flexible covariate adjustment.
Stat Med. 2015 Mar 15;34(6):1012-30. doi: 10.1002/sim.6386. Epub 2014 Dec 5.
8
Improved double-robust estimation in missing data and causal inference models.
Biometrika. 2012 Jun;99(2):439-456. doi: 10.1093/biomet/ass013. Epub 2012 Apr 29.
9
-statistic with side information.
J Multivar Anal. 2012 Oct;111:20-38. doi: 10.1016/j.jmva.2012.04.008.
10
Variable selection in monotone single-index models via the adaptive LASSO.
Stat Med. 2013 Sep 30;32(22):3944-54. doi: 10.1002/sim.5834. Epub 2013 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验