Suppr超能文献

基于深度神经网络的低剂量 FDG PET 成像肺癌筛查中小肺病灶检测的研究。

Investigation of small lung lesion detection for lung cancer screening in low dose FDG PET imaging by deep neural networks.

机构信息

Department of Emergency Traumatic Surgery, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.

Department of Nuclear Medicine, Fenyang Hospital of Shanxi Province, Fenyang Hospital Affiliated to Shanxi Medical University, Fenyang, China.

出版信息

Front Public Health. 2022 Nov 9;10:1047714. doi: 10.3389/fpubh.2022.1047714. eCollection 2022.

Abstract

PURPOSE

FDG PET imaging is often recommended for the diagnosis of pulmonary nodules after indeterminate low dose CT lung cancer screening. Lowering FDG injecting is desirable for PET imaging. In this work, we aimed to investigate the performance of a deep learning framework in the automatic diagnoses of pulmonary nodules at different count levels of PET imaging.

MATERIALS AND METHODS

Twenty patients with 18F-FDG-avid pulmonary nodules were included and divided into independent training (60%), validation (20%), and test (20%) subsets. We trained a convolutional neural network (ResNet-50) on original DICOM images and used ImageNet pre-trained weight to fine-tune the model. Simulated low-dose PET images at the 9 count levels (20 × 10, 15 × 10, 10 × 10, 7.5 × 10, 5 × 10, 2 × 10, 1 × 10, 0.5 × 10, and 0.25 × 10 counts) were obtained by randomly discarding events in the PET list mode data for each subject. For the test dataset with 4 patients at the 9 count levels, 3,307 and 3,384 image patches were produced for lesion and background, respectively. The receiver-operator characteristic (ROC) curve of the proposed model under the different count levels with different lesion size groups were assessed and the areas under the ROC curve (AUC) were compared.

RESULTS

The AUC values were >0.98 for all count levels except for 0.5 and 0.25 million true counts (0.975 (CL 95%, 0.953-0.992) and 0.963 (CL 95%, 0.941-0.982), respectively). The AUC values were 0.941(CL 95%, 0.923-0.956), 0.993(CL 95%, 0.990-0.996) and 0.998(CL 95%, 0.996-0.999) for different groups of lesion size with effective diameter (R) <10 mm, 10-20 mm, and >20 mm, respectively. The count limit for achieving high AUC (≥0.96) for lesions with size < 10 mm and > 10 mm were 2 million (equivalent to an effective dose of 0.08 mSv) and 0.25 million true counts (equivalent to an effective dose of 0.01 mSv), respectively.

CONCLUSION

All of the above results suggest that the proposed deep learning based method may detect small lesions <10 mm at an effective radiation dose <0.1 mSv.

ADVANCES IN KNOWLEDGE

We investigated the advantages and limitations of a fully automated lung cancer detection method based on deep learning models for data with different lesion sizes and different count levels, and gave guidance for clinical application.

摘要

目的

FDG PET 成像常用于低剂量 CT 肺癌筛查后肺结节的诊断。降低 FDG 注射剂量对于 PET 成像来说是可取的。在这项工作中,我们旨在研究深度学习框架在不同 PET 成像计数水平下对肺结节自动诊断的性能。

材料与方法

纳入 20 例 18F-FDG 摄取性肺结节患者,分为独立训练集(60%)、验证集(20%)和测试集(20%)。我们在原始 DICOM 图像上训练卷积神经网络(ResNet-50),并使用 ImageNet 预训练权重对模型进行微调。通过随机丢弃每位受试者的 PET 列表模式数据中的事件,获得 9 个计数水平(20×10、15×10、10×10、7.5×10、5×10、2×10、1×10、0.5×10 和 0.25×10 计数)的模拟低剂量 PET 图像。对于 4 名患者在 9 个计数水平的测试数据集,分别为病变和背景生成了 3307 和 3384 个图像补丁。评估了不同计数水平下病变大小不同的组中所提出模型的接收器工作特征(ROC)曲线,并比较了 ROC 曲线下的面积(AUC)。

结果

除了 0.5 和 0.25 百万个真实计数(分别为 0.975(95%置信区间,0.953-0.992)和 0.963(95%置信区间,0.941-0.982)外),所有计数水平的 AUC 值均>0.98。对于有效直径(R)<10 mm、10-20 mm 和>20 mm 的不同病变大小组,AUC 值分别为 0.941(95%置信区间,0.923-0.956)、0.993(95%置信区间,0.990-0.996)和 0.998(95%置信区间,0.996-0.999)。对于大小<10 mm 和>10 mm 的病变,实现高 AUC(≥0.96)的计数限值分别为 200 万(相当于有效剂量 0.08 mSv)和 0.25 万真实计数(相当于有效剂量 0.01 mSv)。

结论

所有上述结果表明,所提出的基于深度学习的方法可能在<0.1 mSv 的有效辐射剂量下检测到<10 mm 的小病变。

知识的进步

我们研究了基于深度学习模型的全自动肺癌检测方法在不同病变大小和不同计数水平的数据中的优缺点,并为临床应用提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1522/9682227/9bba652b81aa/fpubh-10-1047714-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验