Suppr超能文献

纵向生物标志物和生存结局联合模型的高斯变分近似推断。

Gaussian variational approximate inference for joint models of longitudinal biomarkers and a survival outcome.

机构信息

Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.

出版信息

Stat Med. 2023 Feb 10;42(3):316-330. doi: 10.1002/sim.9619. Epub 2022 Nov 28.

Abstract

The shared random effects joint model is one of the most widely used approaches to study the associations between longitudinal biomarkers and a survival outcome and make dynamic risk predictions using the longitudinally measured biomarkers. Various types of joint models have been developed under different settings in the past decades. One major limitation of joint models is that they could be computationally expensive for complex models where the number of the shared random effects is large. Moreover, the inferential accuracy of joint models could also be diminished for complex models due to approximation errors. However, complex models are frequently needed in practice, for example, when the longitudinal biomarkers have nonlinear trajectories over time or the number of longitudinal biomarkers of interest is large. In this article, we propose a novel Gaussian variational approximate inference approach for fitting joint models, which significantly improves computational efficiency while maintaining inferential accuracy. We conduct extensive simulation studies to evaluate the performance of our proposed method and compare it to existing methods. The performance of our proposed method is further demonstrated on a dataset of patients with primary biliary cirrhosis.

摘要

共享随机效应联合模型是研究纵向生物标志物与生存结局之间关联并使用纵向测量生物标志物进行动态风险预测的最广泛使用的方法之一。在过去几十年中,已经在不同的设置下开发了各种类型的联合模型。联合模型的一个主要局限性是,对于共享随机效应数量较大的复杂模型,计算成本可能很高。此外,由于近似误差,复杂模型的联合模型推断准确性也可能降低。然而,在实践中经常需要复杂的模型,例如,当纵向生物标志物随时间具有非线性轨迹或感兴趣的纵向生物标志物数量较大时。本文提出了一种新的用于拟合联合模型的高斯变分近似推理方法,该方法在保持推断准确性的同时,显著提高了计算效率。我们进行了广泛的模拟研究来评估我们提出的方法的性能,并将其与现有方法进行比较。我们提出的方法的性能在原发性胆汁性肝硬化患者数据集上进一步得到了验证。

相似文献

1
Gaussian variational approximate inference for joint models of longitudinal biomarkers and a survival outcome.
Stat Med. 2023 Feb 10;42(3):316-330. doi: 10.1002/sim.9619. Epub 2022 Nov 28.
2
Variable selection for joint models with time-varying coefficients.
Stat Methods Med Res. 2020 Jan;29(1):309-322. doi: 10.1177/0962280219873125. Epub 2019 Sep 12.
6
An approximate joint model for multiple paired longitudinal outcomes and time-to-event data.
Biometrics. 2018 Sep;74(3):1112-1119. doi: 10.1111/biom.12862. Epub 2018 Feb 28.
7
Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker.
BMC Med Res Methodol. 2021 Oct 17;21(1):216. doi: 10.1186/s12874-021-01375-x.
8
Generalized functional linear model with a point process predictor.
Stat Med. 2024 Apr 15;43(8):1564-1576. doi: 10.1002/sim.10023. Epub 2024 Feb 8.
9
Approximate Bayesian inference for joint linear and partially linear modeling of longitudinal zero-inflated count and time to event data.
Stat Methods Med Res. 2021 Jun;30(6):1484-1501. doi: 10.1177/09622802211002868. Epub 2021 Apr 19.
10
A Gaussian copula approach for dynamic prediction of survival with a longitudinal biomarker.
Biostatistics. 2021 Jul 17;22(3):504-521. doi: 10.1093/biostatistics/kxz049.

本文引用的文献

1
Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension.
Stat Biosci. 2019 Dec;11(3):614-629. doi: 10.1007/s12561-019-09256-0. Epub 2019 Sep 23.
3
joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes.
BMC Med Res Methodol. 2018 Jun 7;18(1):50. doi: 10.1186/s12874-018-0502-1.
5
Dynamic predictions using flexible joint models of longitudinal and time-to-event data.
Stat Med. 2017 Apr 30;36(9):1447-1460. doi: 10.1002/sim.7209. Epub 2017 Jan 22.
6
Variational methods for fitting complex Bayesian mixed effects models to health data.
Stat Med. 2016 Jan 30;35(2):165-88. doi: 10.1002/sim.6737. Epub 2015 Sep 28.
7
Real-time individual predictions of prostate cancer recurrence using joint models.
Biometrics. 2013 Mar;69(1):206-13. doi: 10.1111/j.1541-0420.2012.01823.x. Epub 2013 Feb 4.
8
Joint modeling of survival and longitudinal data: likelihood approach revisited.
Biometrics. 2006 Dec;62(4):1037-43. doi: 10.1111/j.1541-0420.2006.00570.x.
9
Joint modelling of longitudinal measurements and event time data.
Biostatistics. 2000 Dec;1(4):465-80. doi: 10.1093/biostatistics/1.4.465.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验