United Graduate School of Agricultural Science, Gifu Universitygrid.256342.4, Gifu City, Japan.
Bioproduction Research Institute, National Institute of Advanced and Industrial Science and Technology (AIST), Tsukuba City, Japan.
Appl Environ Microbiol. 2022 Dec 20;88(24):e0155422. doi: 10.1128/aem.01554-22. Epub 2022 Nov 29.
The development of suppressive soil is an ideal strategy to sustainably combat soilborne diseases. Previously, the cultivation of Allium plants increased antagonistic bacteria populations in soil, alleviating Fusarium wilt of different crops. This study aimed to identify a compound produced by Allium plants that can induce bacteria-mediated soil suppressiveness toward Fusarium wilt. The amendment of soils with γ-glutamyl--allyl-l-cysteine (GSAC), a unique dipeptide abundantly detected in the root extract of Welsh onion (Allium fistulosum), significantly suppressed Fusarium wilt diseases, whereas three other commercial dipeptides had no such effects. GSAC application did not suppress the disease in sterilized soil. Furthermore, the suppressiveness of soil amended with GSAC could be transferred to sterilized soil via soil microflora transplantation. This suppressiveness was eliminated by pretreating GSAC-amended soil microflora with antibacterial antibiotics, indicating that the suppressiveness of GSAC-amended soil is generated by the activity of antagonistic bacteria. Amplicon sequencing of the 16S rRNA gene revealed that GSAC application significantly increased the relative abundance of Pseudomonas (OTU224), Burkholderia-Caballeronia-Paraburkholderia (OTU387), and Bdellovibrio (OTU1259) in soils. Surprisingly, the relative abundance of OTU224 was significantly greater in Welsh onion rhizospheres than in noncultivated soil. Pseudomonas strains corresponding to OTU224, isolated from Welsh onion rhizospheres, displayed a remarkable suppressive effect against cucumber Fusarium wilt, implying that OTU224 was involved in GSAC-mediated suppressiveness. This is the first study on the potential of GSAC as a soil microflora-manipulating agent that can enhance soil suppressiveness to Fusarium wilt. Methods for increasing soil suppressiveness via soil microflora manipulation have long been explored as an ideal strategy to protect plants from soilborne pathogens. However, viable methods offering consistent disease control effects have not yet been developed. Previously, the cultivation of Allium plants was demonstrated to induce bacteria-mediated soil suppressiveness to Fusarium wilt of different crop plants. This study discovered that the application of γ-glutamyl--allyl-l-cysteine, a unique dipeptide synthesized by Welsh onion, to soil enhances Fusarium wilt suppressiveness by increasing the relative abundance of indigenous antagonistic bacteria irrespective of the soil type. This finding will facilitate research supporting the development of environmentally friendly control measures for soilborne diseases.
抑制性土壤的发展是一种可持续防治土传病害的理想策略。以前,葱属植物的种植增加了土壤中拮抗菌的数量,缓解了不同作物的枯萎病。本研究旨在鉴定一种由葱属植物产生的化合物,该化合物可以诱导细菌介导的对枯萎病的土壤抑制作用。用γ-谷氨酰-烯丙基-L-半胱氨酸(GSAC)改良土壤,GSAC 是大葱(Allium fistulosum)根提取物中大量检测到的独特二肽,可显著抑制枯萎病,但其他三种商业二肽没有这种效果。GSAC 的应用不能抑制灭菌土壤中的疾病。此外,用 GSAC 改良的土壤微生物可以通过土壤微生物移植转移到灭菌土壤中。用抗菌抗生素预处理 GSAC 改良的土壤微生物可消除这种抑制作用,表明 GSAC 改良的土壤抑制作用是由拮抗菌的活性产生的。16S rRNA 基因的扩增子测序显示,GSAC 应用显著增加了土壤中假单胞菌(OTU224)、伯克霍尔德菌-卡巴利奥尼-帕博克霍尔德菌(OTU387)和蛭弧菌(OTU1259)的相对丰度。令人惊讶的是,OTU224 在大葱根际中的相对丰度明显大于非耕作土壤。从大葱根际分离到的与 OTU224 相对应的假单胞菌菌株对黄瓜枯萎病表现出显著的抑制作用,这表明 OTU224 参与了 GSAC 介导的抑制作用。这是首次研究 GSAC 作为一种能够增强对枯萎病土壤抑制性的土壤微生物群调节剂的潜力。 长期以来,人们一直在探索通过土壤微生物群操纵来增加土壤抑制性的方法,作为保护植物免受土传病原体侵害的理想策略。然而,尚未开发出提供一致疾病控制效果的可行方法。以前,葱属植物的种植被证明可以诱导不同作物植物的枯萎病的细菌介导的土壤抑制作用。本研究发现,应用γ-谷氨酰-烯丙基-L-半胱氨酸,一种由大葱合成的独特二肽,可增强土壤对枯萎病的抑制作用,同时增加土著拮抗菌的相对丰度,而与土壤类型无关。这一发现将有助于支持开发对土传病害具有环保控制措施的研究。