IEEE/ACM Trans Comput Biol Bioinform. 2023 May-Jun;20(3):1943-1952. doi: 10.1109/TCBB.2022.3225423. Epub 2023 Jun 5.
Drug discovery and drug repurposing often rely on the successful prediction of drug-target interactions (DTIs). Recent advances have shown great promise in applying deep learning to drug-target interaction prediction. One challenge in building deep learning-based models is to adequately represent drugs and proteins that encompass the fundamental local chemical environments and long-distance information among amino acids of proteins (or atoms of drugs). Another challenge is to efficiently model the intermolecular interactions between drugs and proteins, which plays vital roles in the DTIs. To this end, we propose a novel model, GIFDTI, which consists of three key components: the sequence feature extractor (CNNFormer), the global molecular feature extractor (GF), and the intermolecular interaction modeling module (IIF). Specifically, CNNFormer incorporates CNN and Transformer to capture the local patterns and encode the long-distance relationship among tokens (atoms or amino acids) in a sequence. Then, GF and IIF extract the global molecular features and the intermolecular interaction features, respectively. We evaluate GIFDTI on six realistic evaluation strategies and the results show it improves DTI prediction performance compared to state-of-the-art methods. Moreover, case studies confirm that our model can be a useful tool to accurately yield low-cost DTIs. The codes of GIFDTI are available at https://github.com/zhaoqichang/GIFDTI.
药物发现和药物再利用通常依赖于成功预测药物-靶标相互作用(DTIs)。最近的进展表明,将深度学习应用于药物-靶标相互作用预测具有很大的前景。在构建基于深度学习的模型时,面临的一个挑战是充分表示药物和蛋白质,涵盖蛋白质中氨基酸的基本局部化学环境和长程信息(或药物的原子)。另一个挑战是有效地对药物和蛋白质之间的分子间相互作用进行建模,这在 DTIs 中起着至关重要的作用。为此,我们提出了一个新的模型,即 GIFDTI,它由三个关键组件组成:序列特征提取器(CNNFormer)、全局分子特征提取器(GF)和分子间相互作用建模模块(IIF)。具体来说,CNNFormer 结合了 CNN 和 Transformer,以捕获序列中令牌(原子或氨基酸)的局部模式,并对它们之间的长程关系进行编码。然后,GF 和 IIF 分别提取全局分子特征和分子间相互作用特征。我们在六个现实的评估策略上评估了 GIFDTI,结果表明它比最先进的方法提高了 DTI 预测性能。此外,案例研究证实,我们的模型可以成为准确产生低成本 DTIs 的有用工具。GIFDTI 的代码可在 https://github.com/zhaoqichang/GIFDTI 上获得。