Lluka Telmah, Stokes Jonathan M
Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
Ann N Y Acad Sci. 2023 Jan;1519(1):74-93. doi: 10.1111/nyas.14930. Epub 2022 Nov 29.
As the global burden of antibiotic resistance continues to grow, creative approaches to antibiotic discovery are needed to accelerate the development of novel medicines. A rapidly progressing computational revolution-artificial intelligence-offers an optimistic path forward due to its ability to alleviate bottlenecks in the antibiotic discovery pipeline. In this review, we discuss how advancements in artificial intelligence are reinvigorating the adoption of past antibiotic discovery models-namely natural product exploration and small molecule screening. We then explore the application of contemporary machine learning approaches to emerging areas of antibiotic discovery, including antibacterial systems biology, drug combination development, antimicrobial peptide discovery, and mechanism of action prediction. Lastly, we propose a call to action for open access of high-quality screening datasets and interdisciplinary collaboration to accelerate the rate at which machine learning models can be trained and new antibiotic drugs can be developed.
随着抗生素耐药性的全球负担持续增加,需要创新的抗生素发现方法来加速新型药物的开发。一场迅速发展的计算革命——人工智能——因其能够缓解抗生素发现流程中的瓶颈而提供了一条充满希望的前进道路。在本综述中,我们讨论了人工智能的进展如何重振过去的抗生素发现模式的应用,即天然产物探索和小分子筛选。然后,我们探讨当代机器学习方法在抗生素发现新兴领域的应用,包括抗菌系统生物学、药物联合开发、抗菌肽发现以及作用机制预测。最后,我们呼吁采取行动,实现高质量筛选数据集的开放获取和跨学科合作,以加快机器学习模型的训练速度和新抗生素药物的开发速度。