Suppr超能文献

利用 AVHRR 和 MODIS 数据进行遥感监测南亚地区土地利用图的策略。

Remote sensing strategies to monitoring land use maps with AVHRR and MODIS data over the South Asia regions.

机构信息

College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China.

Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China.

出版信息

Environ Sci Pollut Res Int. 2023 Mar;30(11):31741-31754. doi: 10.1007/s11356-022-24401-x. Epub 2022 Dec 1.

Abstract

In South Asia, annual land use and land cover (LULC) is a severe issue in the field of earth science because it affects regional climate, global warming, and human activities. Therefore, it is vitally essential to obtain correct information on the LULC in the South Asia regions. LULC annual map covering the entire period is the primary dataset for climatological research. Although the LULC annual global map was produced from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset in 2001, this limited the perspective of the climatological analysis. This study used AVHRR GIMMS NDVI3g data from 2001 to 2015 to randomly forests classify and produced a time series of the annual LULC map of South Asia. The MODIS land cover products (MCD12Q1) are used as data from reference for trained classifiers. The results were verified using the annual map of the LULC time series, and the space-time dynamics of the LULC map were shown in the last 15 years, from 2001 to 2015. The overall precision of our 15-year land cover map simplifies 16 classes, which is 1.23% and 86.70% significantly maximum as compared to the precision of the MODIS data map. Findings of the past 15 years show the changing detection that forest land, savanna, farmland, urban and established land, arid land, and cultivated land have increased; by contrast, woody prairie, open shrublands, permanent ice and snow, mixed forests, grasslands, evergreen broadleaf forests, permanent wetlands, and water bodies have been significantly reduced over South Asia regions.

摘要

在南亚,土地利用和土地覆被(LULC)的年度变化是地球科学领域的一个严重问题,因为它会影响区域气候、全球变暖以及人类活动。因此,获取南亚地区正确的 LULC 信息至关重要。涵盖整个时期的土地利用和土地覆被年度图是气候研究的主要数据集。尽管 2001 年从 MODIS 数据集生成了全球 LULC 年度地图,但这限制了气候分析的视角。本研究使用 2001 年至 2015 年的 AVHRR GIMMS NDVI3g 数据进行随机森林分类,生成了南亚年度 LULC 地图的时间序列。MODIS 土地覆盖产品(MCD12Q1)用作训练分类器的参考数据。使用年度 LULC 时间序列图验证结果,并展示了过去 15 年(2001 年至 2015 年)的 LULC 地图时空动态。我们 15 年土地覆盖图简化为 16 类,整体精度为 1.23%,明显高于 MODIS 数据图的精度(86.70%)。过去 15 年的研究结果表明,森林、热带稀树草原、农田、城市和建成区、干旱区和耕地面积不断增加,而木草原、开放灌丛、永久性冰雪、混交林、草地、常绿阔叶林、永久性湿地和水体面积显著减少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验