Suppr超能文献

从香根草根际分离出的假单胞菌具有促进植物宿主生长和抗旱的功能潜力。

Pseudomonas cultivated from Andropogon gerardii rhizosphere show functional potential for promoting plant host growth and drought resilience.

机构信息

Division of Biology, Kansas State University, Manhattan, KS, USA.

Department of Biological Sciences, Fort Hays State University, Hays, KS, USA.

出版信息

BMC Genomics. 2022 Nov 30;23(1):784. doi: 10.1186/s12864-022-09019-0.

Abstract

BACKGROUND

Climate change will result in more frequent droughts that can impact soil-inhabiting microbiomes (rhizobiomes) in the agriculturally vital North American perennial grasslands. Rhizobiomes have contributed to enhancing drought resilience and stress resistance properties in plant hosts. In the predicted events of more future droughts, how the changing rhizobiome under environmental stress can impact the plant host resilience needs to be deciphered. There is also an urgent need to identify and recover candidate microorganisms along with their functions, involved in enhancing plant resilience, enabling the successful development of synthetic communities.

RESULTS

In this study, we used the combination of cultivation and high-resolution genomic sequencing of bacterial communities recovered from the rhizosphere of a tallgrass prairie foundation grass, Andropogon gerardii. We cultivated the plant host-associated microbes under artificial drought-induced conditions and identified the microbe(s) that might play a significant role in the rhizobiome of Andropogon gerardii under drought conditions. Phylogenetic analysis of the non-redundant metagenome-assembled genomes (MAGs) identified a bacterial genome of interest - MAG-Pseudomonas. Further metabolic pathway and pangenome analyses recovered genes and pathways related to stress responses including ACC deaminase; nitrogen transformation including assimilatory nitrate reductase in MAG-Pseudomonas, which might be associated with enhanced drought tolerance and growth for Andropogon gerardii.

CONCLUSIONS

Our data indicated that the metagenome-assembled MAG-Pseudomonas has the functional potential to contribute to the plant host's growth during stressful conditions. Our study also suggested the nitrogen transformation potential of MAG-Pseudomonas that could impact Andropogon gerardii growth in a positive way. The cultivation of MAG-Pseudomonas sets the foundation to construct a successful synthetic community for Andropogon gerardii. To conclude, stress resilience mediated through genes ACC deaminase, nitrogen transformation potential through assimilatory nitrate reductase in MAG-Pseudomonas could place this microorganism as an important candidate of the rhizobiome aiding the plant host resilience under environmental stress. This study, therefore, provided insights into the MAG-Pseudomonas and its potential to optimize plant productivity under ever-changing climatic patterns, especially in frequent drought conditions.

摘要

背景

气候变化将导致更频繁的干旱,从而影响北美农业重要的多年生草原土壤栖息微生物组(根瘤菌组)。根瘤菌组有助于增强植物宿主的抗旱能力和抗逆性。在未来更多干旱事件的预测中,环境胁迫下不断变化的根瘤菌如何影响植物宿主的恢复力,需要加以破解。此外,还迫切需要确定和恢复参与增强植物恢复力的候选微生物及其功能,从而成功开发合成群落。

结果

在这项研究中,我们结合了培养和对高草草原基础草类植物柳枝稷根际细菌群落的高分辨率基因组测序。我们在人工干旱诱导条件下培养了与植物宿主相关的微生物,并鉴定了在柳枝稷根瘤菌组中可能在干旱条件下发挥重要作用的微生物。非冗余宏基因组组装基因组(MAGs)的系统发育分析鉴定了一个感兴趣的细菌基因组 - MAG-Pseudomonas。进一步的代谢途径和泛基因组分析恢复了与应激反应相关的基因和途径,包括 ACC 脱氨酶;氮转化包括 MAG-Pseudomonas 中的同化硝酸盐还原酶,这可能与柳枝稷的耐旱性和生长增强有关。

结论

我们的数据表明,宏基因组组装的 MAG-Pseudomonas 具有在应激条件下促进植物宿主生长的功能潜力。我们的研究还表明,MAG-Pseudomonas 的氮转化潜力可能以积极的方式影响柳枝稷的生长。MAG-Pseudomonas 的培养为柳枝稷成功构建合成群落奠定了基础。总之,通过 ACC 脱氨酶介导的应激恢复能力和 MAG-Pseudomonas 中的同化硝酸盐还原酶的氮转化潜力,这种微生物可以作为根瘤菌组中帮助植物宿主在环境胁迫下恢复力的重要候选物。因此,这项研究深入了解了 MAG-Pseudomonas 及其在不断变化的气候模式下优化植物生产力的潜力,特别是在频繁干旱条件下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验