Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France.
Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France.
Neuroimage Clin. 2022;36:103250. doi: 10.1016/j.nicl.2022.103250. Epub 2022 Oct 31.
Parkinson's disease (PD) demonstrates neurodegenerative changes in the substantia nigra pars compacta (SNc) using neuromelanin-sensitive (NM)-MRI. As SNc manual segmentation is prone to substantial inter-individual variability across raters, development of a robust automatic segmentation framework is necessary to facilitate nigral neuromelanin quantification. Artificial intelligence (AI) is gaining traction in the neuroimaging community for automated brain region segmentation tasks using MRI.
Developing and validating AI-based NigraNet, a fully automatic SNc segmentation framework allowing nigral neuromelanin quantification in patients with PD using NM-MRI.
We prospectively included 199 participants comprising 144 early-stage idiopathic PD patients (disease duration = 1.5 ± 1.0 years) and 55 healthy volunteers (HV) scanned using a 3 Tesla MRI including whole brain T1-weighted anatomical imaging and NM-MRI. The regions of interest (ROI) were delineated in all participants automatically using NigraNet, a modified U-net, and compared to manual segmentations performed by two experienced raters. The SNc volumes (Vol), volumes corrected by total intracranial volume (C), normalized signal intensity (NSI) and contrast-to-noise ratio (CNR) were computed. One-way GLM-ANCOVA was performed while adjusting for age and sex as covariates. Diagnostic performance measurement was assessed using the receiver operating characteristic (ROC) analysis. Inter and intra-observer variability were estimated using Dice similarity coefficient (DSC). The agreements between methods were tested using intraclass correlation coefficient (ICC) based on a mean-rating, two-way, mixed-effects model estimates for absolute agreement. Cronbach's alpha and Bland-Altman plots were estimated to assess inter-method consistency.
Using both methods, Vol, C, NSI and CNR measurements differed between PD and HV with an effect of sex for C and CNR. ICC values between the methods demonstrated optimal agreement for C and CNR (ICC > 0.9) and high reproducibility (DSC: 0.80) was also obtained. The SNc measurements also showed good to excellent consistency values (Cronbach's alpha > 0.87). Bland-Altman plots of agreement demonstrated no association of SNc ROI measurement differences between the methods and ROI average measurements while confirming that 95 % of the data points were ranging between the limits of mean difference (d ± 1.96xSD). Percentage changes between PD and HV were -27.4 % and -17.7 % for Vol, -30.0 % and -22.2 % for C, -15.8 % and -14.4 % for NSI, -17.1 % and -16.0 % for CNR for automatic and manual measurements respectively. Using automatic method, in the entire dataset, we obtained the areas under the ROC curve (AUC) of 0.83 for Vol, 0.85 for C, 0.79 for NSI and 0.77 for CNR whereas in the training dataset of 0.96 for Vol, 0.95 for C, 0.85 for NSI and 0.85 for CNR. Disease duration correlated negatively with NSI of the patients for both the automatic and manual measurements.
We presented an AI-based NigraNet framework that utilizes a small MRI training dataset to fully automatize the SNc segmentation procedure with an increased precision and more reproducible results. Considering the consistency, accuracy and speed of our approach, this study could be a crucial step towards the implementation of a time-saving non-rater dependent fully automatic method for studying neuromelanin changes in clinical settings and large-scale neuroimaging studies.
帕金森病(PD)在黑质致密部(SNc)中表现出神经退行性变化,可以使用神经黑色素敏感(NM)-MRI 进行检测。由于 SNc 的手动分割在不同的评估者之间存在很大的个体差异,因此需要开发一种强大的自动分割框架来促进黑质神经黑色素的定量分析。人工智能(AI)在神经影像学领域中越来越受到关注,用于使用 MRI 进行自动脑区分割任务。
开发并验证基于人工智能的 NigraNet,这是一种完全自动化的 SNc 分割框架,允许使用 NM-MRI 对 PD 患者的黑质神经黑色素进行定量分析。
我们前瞻性地纳入了 199 名参与者,包括 144 名早期特发性 PD 患者(病程=1.5±1.0 年)和 55 名健康志愿者(HV),使用 3T MRI 进行扫描,包括全脑 T1 加权解剖成像和 NM-MRI。使用修改后的 U 形网络 NigraNet 自动对 ROI 进行勾画,并与两名经验丰富的评估者进行的手动分割进行比较。计算 SNc 体积(Vol)、校正后的全脑体积(C)、标准化信号强度(NSI)和对比噪声比(CNR)。采用单因素方差分析(ANCOVA),同时调整年龄和性别作为协变量。使用接收器工作特征(ROC)分析评估诊断性能测量。使用 Dice 相似系数(DSC)估计组内和组间的可变性。使用基于平均评分的双向混合效应模型估计的组内相关系数(ICC)来测试方法之间的一致性。使用 Cronbach's alpha 和 Bland-Altman 图来评估方法之间的一致性。
使用两种方法,PD 和 HV 之间的 Vol、C、NSI 和 CNR 测量值存在差异,C 和 CNR 存在性别效应。方法之间的 ICC 值表明 C 和 CNR 具有最佳的一致性(ICC>0.9),并且具有较高的可重复性(DSC:0.80)。SNc 测量值也表现出良好到极好的一致性值(Cronbach's alpha>0.87)。Bland-Altman 图的一致性分析表明,两种方法之间的 ROI 测量值差异与 ROI 平均值测量值之间没有关联,同时证实 95%的数据点位于平均差值(d±1.96xSD)的范围内。PD 和 HV 之间的百分比变化分别为 Vol 的-27.4%和-17.7%,C 的-30.0%和-22.2%,NSI 的-15.8%和-14.4%,CNR 的-17.1%和-16.0%,分别为自动和手动测量值。在整个数据集和训练数据集中,使用自动方法,我们获得了 Vol 的 ROC 曲线下面积(AUC)为 0.83,C 的 AUC 为 0.85,NSI 的 AUC 为 0.79,CNR 的 AUC 为 0.77,而在训练数据集中,Vol 的 AUC 为 0.96,C 的 AUC 为 0.95,NSI 的 AUC 为 0.85,CNR 的 AUC 为 0.85。患者的 NSI 与疾病持续时间呈负相关,无论是自动测量还是手动测量都是如此。
我们提出了一种基于人工智能的 NigraNet 框架,该框架利用小型 MRI 训练数据集,以更高的精度和更可重复的结果,实现 SNc 分割过程的完全自动化。考虑到我们方法的一致性、准确性和速度,这项研究可能是朝着在临床环境和大规模神经影像学研究中实现节省时间、不依赖评估者的完全自动方法来研究神经黑色素变化的重要一步。