Szczapa Benjamin, Daoudi Mohamed, Berretti Stefano, Pala Pietro, Del Bimbo Alberto, Hammal Zakia
Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France.
IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Digital Systems, F-59000 Lille, France, and Univ. Lille, CNRS, Centrale Lille, Institut Mines-Télécom, UMR 9189 CRIStAL, F-59000 Lille, France.
IEEE Trans Affect Comput. 2022 Oct-Dec;13(4):1813-1826. doi: 10.1109/taffc.2022.3207001. Epub 2022 Sep 15.
We propose an automatic method to estimate self-reported pain based on facial landmarks extracted from videos. For each video sequence, we decompose the face into four different regions and the pain intensity is measured by modeling the dynamics of facial movement using the landmarks of these regions. A formulation based on Gram matrices is used for representing the trajectory of landmarks on the Riemannian manifold of symmetric positive semi-definite matrices of fixed rank. A curve fitting algorithm is used to smooth the trajectories and temporal alignment is performed to compute the similarity between the trajectories on the manifold. A Support Vector Regression classifier is then trained to encode extracted trajectories into pain intensity levels consistent with self-reported pain intensity measurement. Finally, a late fusion of the estimation for each region is performed to obtain the final predicted pain level. The proposed approach is evaluated on two publicly available datasets, the UNBCMcMaster Shoulder Pain Archive and the Biovid Heat Pain dataset. We compared our method to the state-of-the-art on both datasets using different testing protocols, showing the competitiveness of the proposed approach.
我们提出了一种基于从视频中提取的面部地标来估计自我报告疼痛的自动方法。对于每个视频序列,我们将面部分解为四个不同区域,并通过使用这些区域的地标对面部运动动态进行建模来测量疼痛强度。基于Gram矩阵的公式用于表示固定秩对称半正定矩阵的黎曼流形上的地标轨迹。使用曲线拟合算法来平滑轨迹,并进行时间对齐以计算流形上轨迹之间的相似度。然后训练支持向量回归分类器,将提取的轨迹编码为与自我报告疼痛强度测量一致的疼痛强度水平。最后,对每个区域的估计进行后期融合,以获得最终预测的疼痛水平。我们在两个公开可用的数据集上评估了所提出的方法,即UNBCMcMaster肩痛档案和Biovid热痛数据集。我们使用不同的测试协议在这两个数据集上将我们的方法与当前最先进的方法进行了比较,展示了所提出方法的竞争力。