Suppr超能文献

通过固定秩半正定矩阵流形中的轨迹分析自动估计自我报告的疼痛。

Automatic Estimation of Self-Reported Pain by Trajectory Analysis in the Manifold of Fixed Rank Positive Semi-Definite Matrices.

作者信息

Szczapa Benjamin, Daoudi Mohamed, Berretti Stefano, Pala Pietro, Del Bimbo Alberto, Hammal Zakia

机构信息

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France.

IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Digital Systems, F-59000 Lille, France, and Univ. Lille, CNRS, Centrale Lille, Institut Mines-Télécom, UMR 9189 CRIStAL, F-59000 Lille, France.

出版信息

IEEE Trans Affect Comput. 2022 Oct-Dec;13(4):1813-1826. doi: 10.1109/taffc.2022.3207001. Epub 2022 Sep 15.

Abstract

We propose an automatic method to estimate self-reported pain based on facial landmarks extracted from videos. For each video sequence, we decompose the face into four different regions and the pain intensity is measured by modeling the dynamics of facial movement using the landmarks of these regions. A formulation based on Gram matrices is used for representing the trajectory of landmarks on the Riemannian manifold of symmetric positive semi-definite matrices of fixed rank. A curve fitting algorithm is used to smooth the trajectories and temporal alignment is performed to compute the similarity between the trajectories on the manifold. A Support Vector Regression classifier is then trained to encode extracted trajectories into pain intensity levels consistent with self-reported pain intensity measurement. Finally, a late fusion of the estimation for each region is performed to obtain the final predicted pain level. The proposed approach is evaluated on two publicly available datasets, the UNBCMcMaster Shoulder Pain Archive and the Biovid Heat Pain dataset. We compared our method to the state-of-the-art on both datasets using different testing protocols, showing the competitiveness of the proposed approach.

摘要

我们提出了一种基于从视频中提取的面部地标来估计自我报告疼痛的自动方法。对于每个视频序列,我们将面部分解为四个不同区域,并通过使用这些区域的地标对面部运动动态进行建模来测量疼痛强度。基于Gram矩阵的公式用于表示固定秩对称半正定矩阵的黎曼流形上的地标轨迹。使用曲线拟合算法来平滑轨迹,并进行时间对齐以计算流形上轨迹之间的相似度。然后训练支持向量回归分类器,将提取的轨迹编码为与自我报告疼痛强度测量一致的疼痛强度水平。最后,对每个区域的估计进行后期融合,以获得最终预测的疼痛水平。我们在两个公开可用的数据集上评估了所提出的方法,即UNBCMcMaster肩痛档案和Biovid热痛数据集。我们使用不同的测试协议在这两个数据集上将我们的方法与当前最先进的方法进行了比较,展示了所提出方法的竞争力。

相似文献

1
Automatic Estimation of Self-Reported Pain by Trajectory Analysis in the Manifold of Fixed Rank Positive Semi-Definite Matrices.
IEEE Trans Affect Comput. 2022 Oct-Dec;13(4):1813-1826. doi: 10.1109/taffc.2022.3207001. Epub 2022 Sep 15.
2
Automatic Estimation of Self-Reported Pain by Interpretable Representations of Motion Dynamics.
Proc IAPR Int Conf Pattern Recogn. 2021 Jan;2020. doi: 10.1109/icpr48806.2021.9412292. Epub 2021 May 5.
3
A Novel Geometric Framework on Gram Matrix Trajectories for Human Behavior Understanding.
IEEE Trans Pattern Anal Mach Intell. 2020 Jan;42(1):1-14. doi: 10.1109/TPAMI.2018.2872564. Epub 2018 Sep 28.
4
Probabilistic learning vector quantization on manifold of symmetric positive definite matrices.
Neural Netw. 2021 Oct;142:105-118. doi: 10.1016/j.neunet.2021.04.024. Epub 2021 Apr 28.
5
Fall Detection of Elderly People Using the Manifold of Positive Semidefinite Matrices.
J Imaging. 2021 Jul 6;7(7):109. doi: 10.3390/jimaging7070109.
6
Generalized Learning Vector Quantization With Log-Euclidean Metric Learning on Symmetric Positive-Definite Manifold.
IEEE Trans Cybern. 2023 Aug;53(8):5178-5190. doi: 10.1109/TCYB.2022.3178412. Epub 2023 Jul 18.
7
SymNet: A Simple Symmetric Positive Definite Manifold Deep Learning Method for Image Set Classification.
IEEE Trans Neural Netw Learn Syst. 2022 May;33(5):2208-2222. doi: 10.1109/TNNLS.2020.3044176. Epub 2022 May 2.
8
Automatic Analysis of Facial Expressions Based on Deep Covariance Trajectories.
IEEE Trans Neural Netw Learn Syst. 2020 Oct;31(10):3892-3905. doi: 10.1109/TNNLS.2019.2947244. Epub 2019 Nov 14.
9
Symmetric positive definite manifold learning and its application in fault diagnosis.
Neural Netw. 2022 Mar;147:163-174. doi: 10.1016/j.neunet.2021.12.013. Epub 2021 Dec 29.
10
Enforcing Multilabel Consistency for Automatic Spatio-Temporal Assessment of Shoulder Pain Intensity.
Proc ACM Int Conf Multimodal Interact. 2020 Oct;2020:156-164. doi: 10.1145/3395035.3425190.

引用本文的文献

1
Automated Assessment of Pain (AAP) and Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4Pain).
Int Conf Affect Comput Intell Interact Workshops Demos. 2024 Sep;2024:1-3. doi: 10.1109/ACIIW63320.2024.00005. Epub 2024 Apr 24.

本文引用的文献

1
Enforcing Multilabel Consistency for Automatic Spatio-Temporal Assessment of Shoulder Pain Intensity.
Proc ACM Int Conf Multimodal Interact. 2020 Oct;2020:156-164. doi: 10.1145/3395035.3425190.
2
Automatic Estimation of Self-Reported Pain by Interpretable Representations of Motion Dynamics.
Proc IAPR Int Conf Pattern Recogn. 2021 Jan;2020. doi: 10.1109/icpr48806.2021.9412292. Epub 2021 May 5.
3
Exploration of physiological sensors, features, and machine learning models for pain intensity estimation.
PLoS One. 2021 Jul 9;16(7):e0254108. doi: 10.1371/journal.pone.0254108. eCollection 2021.
4
OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields.
IEEE Trans Pattern Anal Mach Intell. 2021 Jan;43(1):172-186. doi: 10.1109/TPAMI.2019.2929257. Epub 2020 Dec 4.
5
Continuous Pain Intensity Estimation from Autonomic Signals with Recurrent Neural Networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5624-5627. doi: 10.1109/EMBC.2018.8513575.
6
A Novel Geometric Framework on Gram Matrix Trajectories for Human Behavior Understanding.
IEEE Trans Pattern Anal Mach Intell. 2020 Jan;42(1):1-14. doi: 10.1109/TPAMI.2018.2872564. Epub 2018 Sep 28.
7
Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification.
IEEE Trans Cybern. 2022 May;52(5):3314-3324. doi: 10.1109/TCYB.2017.2662199. Epub 2022 May 19.
8
Action Recognition Using Rate-Invariant Analysis of Skeletal Shape Trajectories.
IEEE Trans Pattern Anal Mach Intell. 2016 Jan;38(1):1-13. doi: 10.1109/tpami.2015.2439257.
9
3-D Human Action Recognition by Shape Analysis of Motion Trajectories on Riemannian Manifold.
IEEE Trans Cybern. 2015 Jul;45(7):1340-52. doi: 10.1109/TCYB.2014.2350774. Epub 2014 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验