Suppr超能文献

从谷歌趋势分析中描述和评估药物使用治疗求助搜索特征及其在信息监测中的应用:纵向描述性和验证性统计分析。

Characterizing Help-Seeking Searches for Substance Use Treatment From Google Trends and Assessing Their Use for Infoveillance: Longitudinal Descriptive and Validation Statistical Analysis.

机构信息

Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, United States.

Department of Medicine, University of California San Diego, La Jolla, CA, United States.

出版信息

J Med Internet Res. 2022 Dec 1;24(12):e41527. doi: 10.2196/41527.

Abstract

BACKGROUND

There is no recognized gold standard method for estimating the number of individuals with substance use disorders (SUDs) seeking help within a given geographical area. This presents a challenge to policy makers in the effective deployment of resources for the treatment of SUDs. Internet search queries related to help seeking for SUDs using Google Trends may represent a low-cost, real-time, and data-driven infoveillance tool to address this shortfall in information.

OBJECTIVE

This paper assesses the feasibility of using search query data related to help seeking for SUDs as an indicator of unmet treatment needs, demand for treatment, and predictor of the health harms related to unmet treatment needs. We explore a continuum of hypotheses to account for different outcomes that might be expected to occur depending on the demand for treatment relative to the system capacity and the timing of help seeking in relation to trajectories of substance use and behavior change.

METHODS

We used negative binomial regression models to examine temporal trends in the annual SUD help-seeking internet search queries from Google Trends by US state for cocaine, methamphetamine, opioids, cannabis, and alcohol from 2010 to 2020. To validate the value of these data for surveillance purposes, we then used negative binomial regression models to investigate the relationship between SUD help-seeking searches and state-level outcomes across the continuum of care (including lack of care). We started by looking at associations with self-reported treatment need using data from the National Survey on Drug Use and Health, a national survey of the US general population. Next, we explored associations with treatment admission rates from the Treatment Episode Data Set, a national data system on SUD treatment facilities. Finally, we studied associations with state-level rates of people experiencing and dying from an opioid overdose, using data from the Agency for Healthcare Research and Quality and the CDC WONDER database.

RESULTS

Statistically significant differences in help-seeking searches were observed over time between 2010 and 2020 (based on P<.05 for the corresponding Wald tests). We were able to identify outlier states for each drug over time (eg, West Virginia for both opioids and methamphetamine), indicating significantly higher help-seeking behaviors compared to national trends. Results from our validation analyses across different outcomes showed positive, statistically significant associations for the models relating to treatment need for alcohol use, treatment admissions for opioid and methamphetamine use, emergency department visits related to opioid use, and opioid overdose mortality data (based on regression coefficients having P≤.05).

CONCLUSIONS

This study demonstrates the clear potential for using internet search queries from Google Trends as an infoveillance tool to predict the demand for substance use treatment spatially and temporally, especially for opioid use disorders.

摘要

背景

目前尚无公认的黄金标准方法来估算特定地理区域内寻求帮助的物质使用障碍(SUD)患者人数。这给 SUD 治疗资源的有效配置决策者带来了挑战。使用 Google Trends 进行的与 SUD 相关的求助互联网搜索查询可能代表了一种低成本、实时、数据驱动的信息监测工具,可以弥补这方面的信息不足。

目的

本文评估使用与 SUD 相关的搜索查询数据作为未满足治疗需求、治疗需求以及与未满足治疗需求相关的健康危害预测指标的可行性。我们探讨了一系列假设,以说明根据治疗需求与系统能力的关系以及与物质使用和行为改变轨迹相关的帮助寻求时间,可能出现的不同结果。

方法

我们使用负二项回归模型,根据美国各州 2010 年至 2020 年可卡因、冰毒、阿片类药物、大麻和酒精的 Google Trends 年度 SUD 求助互联网搜索查询数据,研究了时间趋势。为了验证这些数据在监测方面的价值,我们随后使用负二项回归模型,研究了 SUD 求助搜索与整个治疗连续体(包括缺乏治疗)的州级结果之间的关系。我们首先使用来自全国毒品使用和健康调查的数据(一项针对美国普通人群的全国性调查),研究了与自我报告的治疗需求的关联。接下来,我们从治疗事件数据集(一项关于 SUD 治疗设施的全国性数据系统)中探讨了与治疗入院率的关联。最后,我们使用医疗保健研究和质量局以及疾病预防控制中心 WONDER 数据库中的数据,研究了与州级阿片类药物过量经历和死亡人数的关联。

结果

在 2010 年至 2020 年期间,我们观察到帮助搜索的差异在时间上具有统计学意义(相应的 Wald 检验 P<.05)。我们能够识别出每种药物随时间的异常状态(例如,西弗吉尼亚州的阿片类药物和冰毒),表明与全国趋势相比,这些药物的求助行为明显更高。我们对不同结果的验证分析结果表明,对于与酒精使用治疗需求、阿片类药物和冰毒使用治疗入院、与阿片类药物使用相关的急诊室就诊以及阿片类药物过量死亡率数据相关的模型,回归系数具有统计学意义(基于 P≤.05)。

结论

这项研究表明,使用 Google Trends 的互联网搜索查询作为信息监测工具,在空间和时间上预测物质使用治疗需求具有明显的潜力,特别是对于阿片类药物使用障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8df3/9756118/314e9dba762e/jmir_v24i12e41527_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验