Suppr超能文献

通过接触共振原子力显微镜解析分层薄膜的地下结构和弹性模量。

Resolving the Subsurface Structure and Elastic Modulus of Layered Films via Contact Resonance Atomic Force Microscopy.

作者信息

Stan Gheorghe, Ciobanu Cristian V, King Sean W

机构信息

Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States.

Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado80401, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Dec 14;14(49):55238-55248. doi: 10.1021/acsami.2c17962. Epub 2022 Dec 1.

Abstract

Since its discovery, atomic force microscopy (AFM) has become widely used for surface characterization, evolving from a tool for probing surface topography to a versatile method for characterizing mechanical, electrical, chemical, magnetic, and electro-optical properties of surfaces at the nanoscale. Developments of several AFM-based techniques have enabled even subsurface imaging, which is routinely being carried out at the qualitative level of feature detection for localized subsurface inhomogeneities. We surmise, however, that a quantitative three-dimensional (3D) subsurface characterization can emerge from the AFM mechanical response of flat buried interfaces, and present here a methodology for determining the depth of a film and its mechanical properties. Using load-dependent contact resonance atomic force microscopy (CR-AFM) and accurate modeling of the contact between the AFM tip and a layered sample, we determine the relationship between the measured resonance frequency of the AFM probe and the contact stiffness. Our subsequent statistical analysis reveals an intrinsic and sample-specific interdependence between the depth and modulus sensitivities of CR-AFM. This interdependence prevents the simultaneous accurate determination of both depth and modulus from measurements on a single-layered sample. If the elastic moduli of the sample components are predetermined from separate investigations of bulk samples (or otherwise known), then this methodology accurately yields the location of the interface between the layers of the sample; as such, it can serve as a nondestructive and robust technique for probing layer thickness, subsurface features, and elastic properties of materials used in semiconductor electronics, additive manufacturing, or biomaterials.

摘要

自发现以来,原子力显微镜(AFM)已被广泛用于表面表征,从一种探测表面形貌的工具发展成为一种在纳米尺度上表征表面机械、电学、化学、磁学和电光特性的通用方法。几种基于AFM的技术的发展甚至实现了亚表面成像,目前通常在定性水平上对局部亚表面不均匀性进行特征检测。然而,我们推测,通过平坦掩埋界面的AFM机械响应可以实现定量的三维(3D)亚表面表征,并在此提出一种确定薄膜深度及其机械性能的方法。利用与负载相关的接触共振原子力显微镜(CR-AFM)以及AFM探针与分层样品之间接触的精确建模,我们确定了AFM探针测量的共振频率与接触刚度之间的关系。我们随后的统计分析揭示了CR-AFM的深度和模量灵敏度之间存在内在的、特定于样品的相互依赖性。这种相互依赖性使得无法从单层样品的测量中同时准确确定深度和模量。如果样品成分的弹性模量是通过对块状样品的单独研究预先确定的(或以其他方式已知),那么这种方法可以准确地得出样品各层之间界面的位置;因此,它可以作为一种无损且强大的技术,用于探测半导体电子、增材制造或生物材料中使用的材料的层厚、亚表面特征和弹性特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验