Suppr超能文献

在美国,使用养分清单来确定水质改善工作优先级时的注意事项。

Considerations when using nutrient inventories to prioritize water quality improvement efforts across the US.

作者信息

Sabo Robert D, Clark Christopher M, Compton Jana E

机构信息

Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C., United States of America.

Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, United States of America.

出版信息

Environ Res Commun. 2021 Apr 16;3:1-13. doi: 10.1088/2515-7620/abf296.

Abstract

Ongoing water quality degradation tied to nitrogen and phosphorus pollution results in significant economic damages by diminishing the recreational value of surface water and compromising fisheries. Progress in decreasing nitrogen and phosphorus pollution to surface water over the past two decades has been slow. Limited resources need to be leveraged efficiently and effectively to prioritize watersheds for restoration. Leveraging recent nitrogen and phosphorus inventories for the years 2002, 2007, and 2012, we extracted relevant flux and demand terms to help identify US subbasins that are likely contributing a disproportionate amount of point and non-point source nutrient pollution to surface water by exploring the mean spatial distribution of terrestrial anthropogenic surplus, agricultural surplus, agricultural nutrient use efficiency, and point source loads. A small proportion of the landscape, <25% of subbasin area of the United States, contains 50% of anthropogenic and agriculture nitrogen and phosphorus surplus while only 2% of landscape contributes >50% of point source loads into surface water. Point source loads are mainly concentrated in urban areas across the country with point source loading rates often exceeding >10.0 kg N ha yr and >1.0 kg P ha yr. However, the ability for future upgrades to wastewater treatment plant infrastructure alone is unlikely to drive further improvement in water quality, outside of local water ways, since point source loads only account for ~4% of anthropogenic N and P surplus. As such, further progress in boosting nutrient use efficiency in agricultural production, usually lowest in areas of intensive livestock production, would likely contribute to the biggest gains to water quality restoration goals. This analysis and the corresponding database integrate multiple streams of information to highlight areas where N and P are being managed inefficiently to give decision makers a succinct platform to identify likely areas and sources of water quality degradation.

摘要

与氮磷污染相关的持续水质退化,通过降低地表水的娱乐价值和损害渔业,造成了重大经济损失。在过去二十年里,减少地表水氮磷污染的进展一直缓慢。需要有效利用有限资源,对流域恢复工作进行优先排序。利用2002年、2007年和2012年最新的氮磷清单,我们提取了相关通量和需求项,通过探索陆地人为过剩、农业过剩、农业养分利用效率和点源负荷的平均空间分布,来帮助识别美国可能对地表水造成不成比例的点源和非点源养分污染的子流域。一小部分景观,即美国子流域面积的不到25%,包含了50%的人为和农业氮磷过剩,而只有2%的景观贡献了超过50%的点源负荷进入地表水。点源负荷主要集中在全国的城市地区,点源负荷率通常超过10.0千克氮/公顷·年和1.0千克磷/公顷·年。然而,仅靠未来升级污水处理厂基础设施,不太可能推动局部水道以外的水质进一步改善,因为点源负荷仅占人为氮磷过剩的约4%。因此,提高农业生产中养分利用效率(通常在集约化畜牧生产地区最低)的进一步进展,可能对实现水质恢复目标有最大帮助。该分析和相应数据库整合了多方面信息,以突出氮磷管理效率低下的地区,为决策者提供一个简洁的平台,以识别可能导致水质退化的区域和源头。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbb4/9709726/eb9a31630d74/nihms-1701162-f0001.jpg

相似文献

3
A source-sink landscape approach to mitigation of agricultural non-point source pollution: Validation and application.
Environ Pollut. 2022 Dec 1;314:120287. doi: 10.1016/j.envpol.2022.120287. Epub 2022 Sep 27.
4
Source contribution analysis of nutrient pollution in a P-rich watershed: Implications for integrated water quality management.
Environ Pollut. 2021 Jun 15;279:116885. doi: 10.1016/j.envpol.2021.116885. Epub 2021 Mar 10.
5
Modeling and assessing water and nutrient balances in a tile-drained agricultural watershed in the U.S. Corn Belt.
Water Res. 2022 Feb 15;210:117976. doi: 10.1016/j.watres.2021.117976. Epub 2021 Dec 18.
7
Economic development influences on sediment-bound nitrogen and phosphorus accumulation of lakes in China.
Environ Sci Pollut Res Int. 2015 Dec;22(23):18561-73. doi: 10.1007/s11356-015-5171-6. Epub 2015 Sep 19.
8
Spatiotemporal evolution and driving factors of agricultural non-point source pollution in the context of economic green development.
J Environ Manage. 2025 Apr;380:124849. doi: 10.1016/j.jenvman.2025.124849. Epub 2025 Mar 14.
9
Statistical assessment of nonpoint source pollution in agricultural watersheds in the Lower Grand River watershed, MO, USA.
Environ Sci Pollut Res Int. 2019 Jan;26(2):1487-1506. doi: 10.1007/s11356-018-3682-7. Epub 2018 Nov 14.
10
Nitrogen Source Inventory and Loading Tool: An integrated approach toward restoration of water-quality impaired karst springs.
J Environ Manage. 2017 Jul 1;196:702-709. doi: 10.1016/j.jenvman.2017.03.059. Epub 2017 Mar 31.

引用本文的文献

3
Nutrient Explorer: An analytical framework to visualize and investigate drivers of surface water quality.
Environ Model Softw. 2023 Dec;170. doi: 10.1016/j.envsoft.2023.105853.
4
Comparing Drivers of Spatial Variability in U.S. Lake and Stream Phosphorus Concentrations.
J Geophys Res Biogeosci. 2023 Jul 28;128(8). doi: 10.1029/2022jg007227.
5
6
Tripartite evolutionary game and simulation analysis of agricultural non-point source pollution control.
PLoS One. 2024 Jun 28;19(6):e0305191. doi: 10.1371/journal.pone.0305191. eCollection 2024.
7
Prioritizing river basins for nutrient studies.
Environ Monit Assess. 2024 Feb 9;196(3):248. doi: 10.1007/s10661-023-12266-7.
8
Our national nutrient reduction needs: Applying a conservation prioritization framework to US agricultural lands.
J Environ Manage. 2024 Feb;351:119758. doi: 10.1016/j.jenvman.2023.119758. Epub 2023 Dec 12.
9
Modeling Lake Recovery Lag Times Following Influent Phosphorus Loading Reduction.
Environ Model Softw. 2023 Feb 4;162:1-15. doi: 10.1016/j.envsoft.2023.105642.

本文引用的文献

1
Phosphorus Inventory for the Conterminous United States (2002-2012).
J Geophys Res Biogeosci. 2021 Mar;126(4):1-21. doi: 10.1029/2020jg005684.
2
Landscape Drivers of Dynamic Change in Water Quality of U.S. Rivers.
Environ Sci Technol. 2020 Apr 7;54(7):4336-4343. doi: 10.1021/acs.est.9b05344. Epub 2020 Mar 27.
3
A world of co-benefits: Solving the global nitrogen challenge.
Earths Future. 2019;7:1-8. doi: 10.1029/2019EF001222.
4
Phosphorus use efficiency and crop production: Patterns of regional variation in the United States, 1987-2012.
Sci Total Environ. 2019 Oct 1;685:174-188. doi: 10.1016/j.scitotenv.2019.05.228. Epub 2019 May 19.
5
Point sources and agricultural practices control spatial-temporal patterns of orthophosphate in tributaries to Chesapeake Bay.
Sci Total Environ. 2019 Feb 20;652:422-433. doi: 10.1016/j.scitotenv.2018.10.062. Epub 2018 Oct 6.
6
Nitrogen use efficiency and crop production: Patterns of regional variation in the United States, 1987-2012.
Sci Total Environ. 2018 Sep 1;635:498-511. doi: 10.1016/j.scitotenv.2018.04.027. Epub 2018 Apr 24.
7
The Nitrogen Balancing Act: Tracking the Environmental Performance of Food Production.
Bioscience. 2018 Mar 1;68(3):194-203. doi: 10.1093/biosci/bix164. Epub 2018 Feb 7.
8
Convergent evidence for widespread rock nitrogen sources in Earth's surface environment.
Science. 2018 Apr 6;360(6384):58-62. doi: 10.1126/science.aan4399.
9
Subnational mobility and consumption-based environmental accounting of US corn in animal protein and ethanol supply chains.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E7891-E7899. doi: 10.1073/pnas.1703793114. Epub 2017 Sep 5.
10
Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4177-4182. doi: 10.1073/pnas.1618536114. Epub 2017 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验