Suppr超能文献

基于低秩张量方法的马尔可夫链及其在肿瘤进展模型中的应用

Low-rank tensor methods for Markov chains with applications to tumor progression models.

机构信息

Department of Physics, University of Regensburg, 93040, Regensburg, Germany.

Institute for Geometry and Applied Mathematics, RWTH Aachen University, 52062, Aachen, Germany.

出版信息

J Math Biol. 2022 Dec 2;86(1):7. doi: 10.1007/s00285-022-01846-9.

Abstract

Cancer progression can be described by continuous-time Markov chains whose state space grows exponentially in the number of somatic mutations. The age of a tumor at diagnosis is typically unknown. Therefore, the quantity of interest is the time-marginal distribution over all possible genotypes of tumors, defined as the transient distribution integrated over an exponentially distributed observation time. It can be obtained as the solution of a large linear system. However, the sheer size of this system renders classical solvers infeasible. We consider Markov chains whose transition rates are separable functions, allowing for an efficient low-rank tensor representation of the linear system's operator. Thus we can reduce the computational complexity from exponential to linear. We derive a convergent iterative method using low-rank formats whose result satisfies the normalization constraint of a distribution. We also perform numerical experiments illustrating that the marginal distribution is well approximated with low rank.

摘要

癌症的进展可以用连续时间马尔可夫链来描述,其状态空间随体细胞突变数量呈指数增长。肿瘤的诊断年龄通常是未知的。因此,感兴趣的数量是所有可能肿瘤基因型的时间边缘分布,定义为通过指数分布的观测时间积分的瞬态分布。它可以作为一个大型线性系统的解来获得。然而,这个系统的巨大规模使得经典的求解器不可行。我们考虑转移率是可分离函数的马尔可夫链,这允许对线性系统算子进行高效的低秩张量表示。因此,我们可以将计算复杂度从指数级降低到线性级。我们使用低秩格式推导出一种收敛迭代方法,其结果满足分布的归一化约束。我们还进行了数值实验,表明低秩可以很好地逼近边缘分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72bf/9718722/1b1e720de9d3/285_2022_1846_Fig1_HTML.jpg

相似文献

1
Low-rank tensor methods for Markov chains with applications to tumor progression models.
J Math Biol. 2022 Dec 2;86(1):7. doi: 10.1007/s00285-022-01846-9.
2
3
Past states of continuous-time Markov models for ecological communities.
Math Biosci. 2008 Feb;211(2):299-313. doi: 10.1016/j.mbs.2007.08.006. Epub 2007 Sep 2.
4
Fast reactions with non-interacting species in stochastic reaction networks.
Math Biosci Eng. 2022 Jan 11;19(3):2720-2749. doi: 10.3934/mbe.2022124.
6
Generation of intervention strategy for a genetic regulatory network represented by a family of Markov Chains.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7610-3. doi: 10.1109/IEMBS.2011.6091875.
7
Building mean field ODE models using the generalized linear chain trick & Markov chain theory.
J Biol Dyn. 2021 May;15(sup1):S248-S272. doi: 10.1080/17513758.2021.1912418. Epub 2021 Apr 13.
8
Exact Variance-Reduced Simulation of Lattice Continuous-Time Markov Chains with Applications in Reaction Networks.
Bull Math Biol. 2019 Aug;81(8):3159-3184. doi: 10.1007/s11538-019-00576-2. Epub 2019 Feb 13.
9
Dimensional reduction of Markov state models from renormalization group theory.
J Chem Phys. 2016 Sep 28;145(12):124120. doi: 10.1063/1.4963196.
10
Limit theorems for generalized density-dependent Markov chains and bursty stochastic gene regulatory networks.
J Math Biol. 2020 Mar;80(4):959-994. doi: 10.1007/s00285-019-01445-1. Epub 2019 Nov 21.

引用本文的文献

1
Modeling metastatic progression from cross-sectional cancer genomics data.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i140-i150. doi: 10.1093/bioinformatics/btae250.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验