Payman Adele R, Goebel Dan M
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA.
Rev Sci Instrum. 2022 Nov 1;93(11):113543. doi: 10.1063/5.0124694.
Hollow cathodes in electric thrusters normally use an external heater to raise the thermionic electron emitter to emission temperatures. These heaters are a potential single-point failure in the thruster and add a separate power supply to the power processing unit. Heaterless hollow cathodes are attractive for their compact size and potential higher reliability but have only been reliably demonstrated to date in small hollow cathodes capable of discharge currents below around 5 A. A new heaterless LaB hollow cathode has been developed that is capable of discharge currents from 5 to 50 A. The cathode configuration extends the gas feed tube at cathode potential part way into the emitting insert region of the cathode. A high-voltage Paschen discharge is struck from the tube to the keeper that heats the tube tip, which then efficiently heats the insert by radiation. This configuration eliminates the arcing observed in prior large heaterless designs that coupled the high-voltage Paschen discharge to the orifice plate or the insert itself. Discharge current-voltage characteristics show that the presence of the tube does not significantly perturb the insert-region plasma. Startup uses a simple 3 min ignition procedure, and voltage traces of the keeper discharge reveal that much of the present tube-radiator's 100-to-150 W heating power comes from an intermediate thermionic discharge sustained by the tube during the transition between the Paschen discharge and LaB insert thermionic regime. This novel heating mechanism enables an unprecedented class of higher-current heaterless hollow cathodes for the next generation of high-power electric propulsion systems.
电推力器中的空心阴极通常使用外部加热器将热电子发射体加热到发射温度。这些加热器是推力器中潜在的单点故障源,并且在功率处理单元中增加了一个单独的电源。无加热器空心阴极因其紧凑的尺寸和潜在的更高可靠性而具有吸引力,但迄今为止仅在能够产生低于约5A放电电流的小型空心阴极中得到可靠验证。一种新型的无加热器LaB空心阴极已被开发出来,其能够产生5至50A的放电电流。阴极结构将处于阴极电位的气体供应管部分延伸到阴极的发射插入区域。从该管到保持器产生高压帕邢放电,加热管尖,然后通过辐射有效地加热插入物。这种结构消除了在先前大型无加热器设计中观察到的电弧,在先前设计中高压帕邢放电与孔板或插入物本身耦合。放电电流-电压特性表明,该管的存在不会显著干扰插入区域的等离子体。启动采用简单的3分钟点火程序,保持器放电的电压轨迹显示,当前管散热器100至150W的加热功率大部分来自于在帕邢放电和LaB插入物热电子状态之间过渡期间由该管维持的中间热电子放电。这种新颖的加热机制为下一代高功率电推进系统实现了一类前所未有的更高电流无加热器空心阴极。