Suppr超能文献

用于非绝热量子退火的贪婪参数优化

Greedy parameter optimization for diabatic quantum annealing.

作者信息

Kadowaki Tadashi, Nishimori Hidetoshi

机构信息

DENSO CORPORATION, Kounan, Minato-ku, Tokyo 108-0075, Japan.

Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan.

出版信息

Philos Trans A Math Phys Eng Sci. 2023 Jan 23;381(2241):20210416. doi: 10.1098/rsta.2021.0416. Epub 2022 Dec 5.

Abstract

A shorter processing time is desirable for quantum computation to minimize the effects of noise. We propose a simple procedure to variationally determine a set of parameters in the transverse-field Ising model for quantum annealing (QA) appended with a field along the [Formula: see text]-axis. The method consists of greedy optimization of the signs of coefficients of the [Formula: see text]-field term based on the outputs of short annealing processes. We test the idea in the ferromagnetic system with all-to-all couplings and spin-glass problems, and find that the method outperforms the traditional form of QA and simulated annealing in terms of the success probability and the time to solution, in particular, in the case of shorter annealing times, achieving the goal of improved performance while avoiding noise. The non-stoquastic [Formula: see text] term can be eliminated by a rotation in the spin space, resulting in a non-trivial diabatic control of the coefficients in the stoquastic transverse-field Ising model, which may be feasible for experimental realization. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.

摘要

对于量子计算而言,较短的处理时间是可取的,以便将噪声的影响降至最低。我们提出了一种简单的程序,用于变分确定量子退火(QA)的横向场伊辛模型中的一组参数,该模型附加了一个沿[公式:见正文]轴的场。该方法包括基于短退火过程的输出对[公式:见正文]场项系数的符号进行贪婪优化。我们在具有全对全耦合的铁磁系统和自旋玻璃问题中测试了该想法,发现该方法在成功概率和解算时间方面优于传统形式的QA和模拟退火,特别是在退火时间较短的情况下,在避免噪声的同时实现了性能提升的目标。非随机[公式:见正文]项可以通过自旋空间中的旋转消除,从而对随机横向场伊辛模型中的系数进行非平凡的绝热控制,这对于实验实现可能是可行的。本文是主题为“量子退火与计算:挑战与展望”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/9719795/34eb1a4e407f/rsta20210416f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验