Das Kousik, Das Risov, Riyaz Mohd, Parui Arko, Bagchi Debabrata, Singh Ashutosh Kumar, Singh Abhishek Kumar, Vinod Chathakudath P, Peter Sebastian C
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
Adv Mater. 2023 Feb;35(5):e2205994. doi: 10.1002/adma.202205994. Epub 2022 Dec 19.
Obtaining multi-carbon products via CO photoreduction is a major catalytic challenge involving multielectron-mediated CC bond formation. Complex design of multicomponent interfaces that are exploited to achieve this chemical transformation, often leads to untraceable deleterious changes in the interfacial chemical environment affecting CO conversion efficiency and product selectivity. Alternatively, robust metal centers having asymmetric charge distribution can effectuate CC coupling reaction through the stabilization of intermediates, for desired product selectivity. However, generating inherent charge distribution in a single component catalyst is a difficult material design challenge. Here, a novel photocatalyst, Bi S Cl , is presented which selectively converts CO to a C product, ethanol, in high yield under visible light irradiation. Structural analysis through transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy reveals the presence of charge polarized bismuth centers in Bi S Cl . The intrinsic electric field induced by charge polarized bismuth centers renders better separation efficiency of photogenerated electron-hole pair. Furthermore, charge polarized centers yield better adsorption of CO* intermediate and accelerate the rate determining CC coupling step through the formation of OCCOH intermediate. Formation of these intermediates is experimentally mapped by in situ Fourier-transform infrared spectroscopy and further confirmed by theoretical calculation.
通过CO₂光还原获得多碳产物是一项重大的催化挑战,涉及多电子介导的C-C键形成。为实现这种化学转化而设计的多组分界面往往会导致界面化学环境发生难以追踪的有害变化,从而影响CO₂的转化效率和产物选择性。或者,具有不对称电荷分布的稳健金属中心可以通过稳定中间体来实现C-C偶联反应,以获得所需的产物选择性。然而,在单组分催化剂中产生固有电荷分布是一项艰巨的材料设计挑战。在此,我们展示了一种新型光催化剂Bi₄S₄Cl,它在可见光照射下能将CO₂高产率地选择性转化为C₂产物乙醇。通过透射电子显微镜、X射线衍射、X射线光电子能谱和X射线吸收光谱进行的结构分析表明,Bi₄S₄Cl中存在电荷极化的铋中心。电荷极化的铋中心所诱导的内建电场使光生电子-空穴对具有更好的分离效率。此外,电荷极化中心对CO*中间体具有更好的吸附作用,并通过形成OCCOH中间体加速了决定反应速率的C-C偶联步骤。这些中间体的形成通过原位傅里叶变换红外光谱进行了实验表征,并通过理论计算进一步得到证实。