Suppr超能文献

一种基于自注意力引导的 3D 深度残差网络,具有大迁移,使用多通道 MRI 预测放疗后脑转移的局部失败。

A Self-Attention-Guided 3D Deep Residual Network With Big Transfer to Predict Local Failure in Brain Metastasis After Radiotherapy Using Multi-Channel MRI.

机构信息

Department of Electrical Engineering and Computer ScienceLassonde School of EngineeringYork University Toronto ON M3J 1P3 Canada.

Physical Sciences PlatformSunnybrook Research Institute, Sunnybrook Health Sciences Centre Toronto ON M4N 3M5 Canada.

出版信息

IEEE J Transl Eng Health Med. 2022 Nov 4;11:13-22. doi: 10.1109/JTEHM.2022.3219625. eCollection 2023.

Abstract

A noticeable proportion of larger brain metastases (BMs) are not locally controlled after stereotactic radiotherapy, and it may take months before local progression is apparent on standard follow-up imaging. This work proposes and investigates new explainable deep-learning models to predict the radiotherapy outcome for BM. A novel self-attention-guided 3D residual network is introduced for predicting the outcome of local failure (LF) after radiotherapy using the baseline treatment-planning MRI. The 3D self-attention modules facilitate capturing long-range intra/inter slice dependencies which are often overlooked by convolution layers. The proposed model was compared to a vanilla 3D residual network and 3D residual network with CBAM attention in terms of performance in outcome prediction. A training recipe was adapted for the outcome prediction models during pretraining and training the down-stream task based on the recently proposed big transfer principles. A novel 3D visualization module was coupled with the model to demonstrate the impact of various intra/peri-lesion regions on volumetric multi-channel MRI upon the network's prediction. The proposed self-attention-guided 3D residual network outperforms the vanilla residual network and the residual network with CBAM attention in accuracy, F1-score, and AUC. The visualization results show the importance of peri-lesional characteristics on treatment-planning MRI in predicting local outcome after radiotherapy. This study demonstrates the potential of self-attention-guided deep-learning features derived from volumetric MRI in radiotherapy outcome prediction for BM. The insights obtained via the developed visualization module for individual lesions can possibly be applied during radiotherapy planning to decrease the chance of LF.

摘要

相当大比例的较大脑转移瘤(BM)在立体定向放射治疗后无法得到局部控制,并且在标准随访成像上出现局部进展可能需要数月时间。这项工作提出并研究了新的可解释深度学习模型,以预测 BM 的放射治疗结果。引入了一种新颖的自注意力引导 3D 残差网络,用于使用基线治疗计划 MRI 预测放射治疗后局部失败(LF)的结果。3D 自注意力模块有助于捕获卷积层经常忽略的长程切片内/间依赖关系。所提出的模型在预测结果方面与 3D 残差网络和具有 CBAM 注意力的 3D 残差网络进行了比较。根据最近提出的大迁移原则,在预训练和基于下游任务训练期间,为结果预测模型调整了训练方案。与模型耦合的新颖的 3D 可视化模块用于展示各种病变内/周围区域对网络预测的容积多通道 MRI 的影响。所提出的自注意力引导 3D 残差网络在准确性、F1 分数和 AUC 方面优于普通残差网络和具有 CBAM 注意力的残差网络。可视化结果表明,在预测放射治疗后局部结果时,病变周围特征对治疗计划 MRI 的重要性。这项研究证明了从容积 MRI 中提取的自注意力引导深度学习特征在 BM 的放射治疗结果预测中的潜力。通过为个体病变开发的可视化模块获得的见解可能在放射治疗计划期间应用,以降低 LF 的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d4/9721353/11af5db4e0d4/sadeg1abcdef-3219625.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验