Janke Emma, Zhang Marina, Ryu Sang Eun, Bhattarai Janardhan P, Schreck Mary R, Moberly Andrew H, Luo Wenqin, Ding Long, Wesson Daniel W, Ma Minghong
Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
iScience. 2022 Nov 19;25(12):105625. doi: 10.1016/j.isci.2022.105625. eCollection 2022 Dec 22.
Breathing is dynamically modulated by metabolic needs as well as by emotional states. Even though rodents are invaluable models for investigating the neural control of respiration, current literature lacks systematic characterization of breathing dynamics across a broad spectrum of rodent behaviors. Here we uncover a wide diversity in breathing patterns across spontaneous, attractive odor-, stress-, and fear-induced behaviors in mice. Direct recordings of intranasal pressure afford more detailed respiratory information than more traditional whole-body plethysmography. K-means clustering groups 11 well-defined behavioral states into four clusters with distinct key respiratory features. Furthermore, we implement RUSBoost (random undersampling boost) classification, a supervised machine learning model, and find that breathing patterns can separate these behaviors with an accuracy of 80%. Taken together, our findings highlight the tight relationship between breathing and behavior and the potential use of breathing patterns to aid in distinguishing similar behaviors and inform about their internal states.
呼吸会受到代谢需求以及情绪状态的动态调节。尽管啮齿动物是研究呼吸神经控制的宝贵模型,但目前的文献缺乏对广泛啮齿动物行为中呼吸动力学的系统表征。在这里,我们发现小鼠在自发行为、诱人气味诱导行为、应激行为和恐惧诱导行为中的呼吸模式存在广泛差异。与更传统的全身体积描记法相比,鼻内压力的直接记录能提供更详细的呼吸信息。K均值聚类将11种明确的行为状态分为四个具有不同关键呼吸特征的簇。此外,我们实施了RUSBoost(随机欠采样增强)分类,这是一种监督机器学习模型,发现呼吸模式能够以80%的准确率区分这些行为。综上所述,我们的研究结果突出了呼吸与行为之间的紧密关系,以及呼吸模式在辅助区分相似行为并了解其内部状态方面的潜在用途。