El-Kafrawy Sherif A, El-Daly Mai M, Bajrai Leena H, Alandijany Thamir A, Faizo Arwa A, Mobashir Mohammad, Ahmed Sunbul S, Ahmed Sarfraz, Alam Shoaib, Jeet Raja, Kamal Mohammad Amjad, Anwer Syed Tauqeer, Khan Bushra, Tashkandi Manal, Rizvi Moshahid A, Azhar Esam Ibraheem
Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
Front Genet. 2022 Nov 21;13:880440. doi: 10.3389/fgene.2022.880440. eCollection 2022.
Data integration with phenotypes such as gene expression, pathways or function, and protein-protein interactions data has proven to be a highly promising technique for improving human complex diseases, particularly cancer patient outcome prediction. Hepatocellular carcinoma is one of the most prevalent cancers, and the most common cause is chronic HBV and HCV infection, which is linked to the majority of cases, and HBV and HCV play a role in multistep carcinogenesis progression. We examined the list of known hepatocellular carcinoma biomarkers with the publicly available expression profile dataset of hepatocellular carcinoma infected with HCV from day 1 to day 10 in this study. The study covers an overexpression pattern for the selected biomarkers in clinical hepatocellular carcinoma patients, a combined investigation of these biomarkers with the gathered temporal dataset, temporal expression profiling changes, and temporal pathway enrichment following HCV infection. Following a temporal analysis, it was discovered that the early stages of HCV infection tend to be more harmful in terms of expression shifting patterns, and that there is no significant change after that, followed by a set of genes that are consistently altered. PI3K, cAMP, TGF, TNF, Rap1, NF-kB, Apoptosis, Longevity regulating pathway, signaling pathways regulating pluripotency of stem cells, Cytokine-cytokine receptor interaction, p53 signaling, Wnt signaling, Toll-like receptor signaling, and Hippo signaling pathways are just a few of the most commonly enriched pathways. The majority of these pathways are well-known for their roles in the immune system, infection and inflammation, and human illnesses like cancer. We also find that ADCY8, MYC, PTK2, CTNNB1, TP53, RB1, PRKCA, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6, GCK, and FGFR2/3 appear to be among the prominent genes based on the networks of genes and pathways based on the copy number alterations, mutations, and structural variants study.
将数据与基因表达、信号通路或功能等表型以及蛋白质 - 蛋白质相互作用数据进行整合,已被证明是一种极具前景的技术,可用于改善人类复杂疾病,尤其是癌症患者的预后预测。肝细胞癌是最常见的癌症之一,最常见的病因是慢性乙肝病毒(HBV)和丙肝病毒(HCV)感染,这与大多数病例相关,并且HBV和HCV在多步骤致癌进程中发挥作用。在本研究中,我们使用公开可用的HCV感染肝细胞癌从第1天到第10天的表达谱数据集,对已知的肝细胞癌生物标志物列表进行了研究。该研究涵盖了临床肝细胞癌患者中所选生物标志物的过表达模式、这些生物标志物与收集的时间数据集的联合研究、时间表达谱变化以及HCV感染后的时间通路富集情况。经过时间分析发现,HCV感染的早期阶段在表达变化模式方面往往更具危害性,之后没有显著变化,随后是一组持续改变的基因。PI3K、cAMP、TGF、TNF、Rap1、NF - kB、凋亡、长寿调节通路、调节干细胞多能性的信号通路、细胞因子 - 细胞因子受体相互作用、p53信号通路、Wnt信号通路、Toll样受体信号通路和Hippo信号通路只是一些最常见的富集通路。这些通路中的大多数因其在免疫系统、感染和炎症以及癌症等人类疾病中的作用而闻名。我们还发现,基于基因拷贝数改变、突变和结构变异研究的基因和通路网络,ADCY8、MYC、PTK2、CTNNB1、TP53、RB1、PRKCA、TCF7L2、PAK1、ITPR2、CYP3A4、UGT1A6、GCK和FGFR2/3似乎是突出的基因。